Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/430
Title: | A Patchy Growth via Successive and Simultaneous Cambia: Key to Success of the Most Widespread Mangrove Species Avicennia marina? |
Authors: | Schmitz, N. Verheyden, A Kairo, J. Beeckman, H. Koedam, N. |
Keywords: | Growth rate Salinity effects Mangrove swamps Environmental conditions Environmental factors Water salinity Soil texture Differentiation Mangroves Hydraulics |
Issue Date: | 2007 |
Publisher: | Oxford University Press, Oxford Journals, Great Clarendon Street Oxford OX2 6DP UK, [mailto:jnl.samples@oup.co.uk] |
Citation: | Dendrochronologia Vol. 25 p. 87–96. |
Abstract: | BACKGROUND AND AIMS: Secondary growth via successive cambia has been intriguing researchers for decades. Insight into the mechanism of growth layer formation is, however, limited to the cellular level. The present study aims to clarify secondary growth via successive cambia in the mangrove species Avicennia marina on a macroscopic level, addressing the formation of the growth layer network as a whole. In addition, previously suggested effects of salinity on growth layer formation were reconsidered. METHODS: A 1-year cambial marking experiment was performed on 80 trees from eight sites in two mangrove forests in Kenya. Environmental (soil water salinity and nutrients, soil texture, inundation frequency) and tree characteristics (diameter, height, leaf area index) were recorded for each site. Both groups of variables were analysed in relation to annual number of growth layers, annual radial increment and average growth layer width of stem discs. KEY RESULTS: Between trees of the same site, the number of growth layers formed during the 1-year study period varied from only part of a growth layer up to four growth layers, and was highly correlated to the corresponding radial increment (0-5 mm year super(-1)), even along the different sides of asymmetric stem discs. The radial increment was unrelated to salinity, but the growth layer width decreased with increasing salinity and decreasing tree height. CONCLUSIONS: A patchy growth mechanism was proposed, with an optimal growth at distinct moments in time at different positions around the stem circumference. This strategy creates the opportunity to form several growth layers simultaneously, as observed in 14 % of the studied trees, which may optimize tree growth under favourable conditions. Strong evidence was provided for a mainly endogenous trigger controlling cambium differentiation, with an additional influence of current environmental conditions in a trade-off between hydraulic efficiency and mechanical stability. |
URI: | http://hdl.handle.net/123456789/430 |
ISSN: | 0305-7364 |
Appears in Collections: | Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
schmitz2007.pdf | 649.74 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.