Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/412
Title: Genetic population structure of penaeid prawns Penaeus monodon Fabricius 1798, Fenneropenaeus indicus H. Milne Edwards 1837 and Metapenaeus monoceros Fabricius 1798 in the Malindi–Ungwana Bay, Kenya
Authors: Mkare, T.
Keywords: Genetic diversity
Population structure
Fisheries management
DNA
Issue Date: 2013
Publisher: Stellenbosch University
Series/Report no.: Master of Science;91
Abstract: Comparative analyses of genetic diversity, population structure and evolutionary relationships among co–distributed species can provide useful insights into fisheries management. In this study, mitochondrial DNA control region (mtCR) sequences were used to investigate genetic population structure and recruitment patterns of three co–occurring shallow water penaeid prawn species; Penaeus monodon, Fenneropenaeus indicus and Metapenaeus monoceros. These taxa dominate artisanal and commercial prawn catches in the Malindi–Ungwana Bay in Kenya, where juvenile prawns inhabit estuarine habitats, and adults occur further offshore, on mudbanks in the bay. A total of 296 [i.e. (P. monodon; n = 129), (F. indicus; n = 96), (M. monoceros; n = 71)] specimens were sampled from five sites; two estuarine nursery areas (juveniles), a nearshore mid–station (adults), and two offshore areas (adults). The sites were chosen to represent the bulk of the Kenyan fishery activities, and to include juvenile and adult cohorts that are presumably connected to each other through larval dispersal processes and migrations. Juveniles were obtained during 2010 from local fishermen, and adult prawns during 2011 using a commercial prawn trawler. Analysis of the mtCR sequences indicated high haplotype diversity (P. monodon; h = 0.9996 ± 0.0010; F. indicus; h = 0.9998 ± 0.0015; M. monoceros; h = 0.9815 ± 0.0110) for all three species. Genetic differentiation results for each species using AMOVA indicated no significant population differentiation (P. monodon; ΦST = 0.000, = p > 0.05; F. indicus; ΦST = 0.000, = p > 0.05; M. monoceros; ΦST = 0.0164, = p > 0.05) and pairwise ΦST statistics among sampling sites indicated the complete absence of spatial differentiation of female genes for all three species. In addition, the mtDNA data of P. monodon (i.e. n = 103) was augmented by using six polymorphic nuclear microsatellite loci. The pattern of panmixia was supported by the microsatellite analyses of P. monodon where AMOVA (i.e. RST = 0.00113, = p > 0.05), pairwise RST statistics (i.e. RST = 0.0000–0.0223, = p > 0.05) and STRUCTURE all confirmed the complete absence of genetic differentiation, among all sampled localities. Based on the absence of genetic population structure, each of the three species can be regarded as a single management unit throughout the Malindi–Ungwana Bay area. Spatial management strategies for prawn fisheries in the bay should therefore rely on factors other than genetic metapopulations, such as seasonal prawn recruitment and distribution patterns, ecosystem functioning and socio–economic implications to fishing communities and commercial trawl fishing companies.
Description: 2013 Stellenbosch University
URI: http://hdl.handle.net/123456789/412
Appears in Collections:Theses/Dissertations

Files in This Item:
File Description SizeFormat 
Mkare_MSC_Thesis.pdf1.73 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.