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Abstract                                                                              

Comparative analyses of genetic diversity, population structure and evolutionary relationships 

among co–distributed species can provide useful insights into fisheries management. In this 

study, mitochondrial DNA control region (mtCR) sequences were used to investigate genetic 

population structure and recruitment patterns of three co–occurring shallow water penaeid prawn 

species; Penaeus monodon, Fenneropenaeus indicus and Metapenaeus monoceros. These taxa 

dominate artisanal and commercial prawn catches in the Malindi–Ungwana Bay in Kenya, where 

juvenile prawns inhabit estuarine habitats, and adults occur further offshore, on mudbanks in the 

bay. A total of 296 [i.e. (P. monodon; n = 129), (F. indicus; n = 96), (M. monoceros; n = 71)] 

specimens were sampled from five sites; two estuarine nursery areas (juveniles), a nearshore 

mid–station (adults), and two offshore areas (adults). The sites were chosen to represent the bulk 

of the Kenyan fishery activities, and to include juvenile and adult cohorts that are presumably 

connected to each other through larval dispersal processes and migrations. Juveniles were 

obtained during 2010 from local fishermen, and adult prawns during 2011 using a commercial 

prawn trawler. Analysis of the mtCR sequences indicated high haplotype diversity (P. monodon; 

h = 0.9996 ± 0.0010; F. indicus; h = 0.9998 ± 0.0015; M. monoceros; h = 0.9815 ± 0.0110) for 

all three species. Genetic differentiation results for each species using AMOVA indicated no 

significant population differentiation (P. monodon; ΦST = 0.000, = p > 0.05; F. indicus; ΦST = 

0.000, = p > 0.05; M. monoceros; ΦST = 0.0164, = p > 0.05) and pairwise ΦST statistics among 

sampling sites indicated the complete absence of spatial differentiation of female genes for all 

three species. In addition, the mtDNA data of P. monodon (i.e. n = 103) was augmented by using 

six polymorphic nuclear microsatellite loci. The pattern of panmixia was supported by the 
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microsatellite analyses of P. monodon where AMOVA (i.e. RST = 0.00113, = p > 0.05), pairwise 

RST statistics (i.e. RST = 0.0000–0.0223, = p > 0.05) and STRUCTURE all confirmed the 

complete absence of genetic differentiation, among all sampled localities. Based on the absence 

of genetic population structure, each of the three species can be regarded as a single management 

unit throughout the Malindi–Ungwana Bay area. Spatial management strategies for prawn 

fisheries in the bay should therefore rely on factors other than genetic metapopulations, such as 

seasonal prawn recruitment and distribution patterns, ecosystem functioning and socio–economic 

implications to fishing communities and commercial trawl fishing companies.    
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Opsomming 

Vergelykende analise van genetiese diversiteit, bevolkings stuktuur en evolutionêre 

verwantskappe tussen spesies wat ‗n verspreidingsgebied deel kan nuttige insigte lewer oor 

vissery bestuur.  In hierdie studie was die mitokondriale DNS kontrole area (mtCR) 

volgordebepalings gebruik om die bevolkings genetiese stuktuur en werwingspatrone van drie 

mede-verspreide vlak water penaeid garnaal spesies; Penaeus monodon, Fenneropenaeus indicus 

and Metapenaeus monoceros te ondersoek.  Hierdie taksa domineer die ambagtelike en 

kommersiële vangste in die Malindi-Ungwanabaai in Kenya waar, onvolwasse garnale in 

riviermondings voorkom en volwassenes in dieper waters op modderbanke in die baai voorkom.  

‗n Totaal van 296 [(P. monodon; n = 129), (F. indicus; n = 96), (M. monoceros; n = 71)] 

monsters was geneem vanaf vyf lokaliteite; twee in riviermondings (onvolwassenes), ‗n naby-

kus mid stasie (volwasse) en twee diep water (volwasse) areas.  Hierdie lokaliteite was gekies 

om die oorgrote meerderheid van Kenya se vissery aktiwiteite, asook die onvolwasses en 

volwassene kohorte te verteenwoordig wat vermoedelik geneties verbind is aan mekaar deur 

larwale verspreidingsprosesse en migrasies. Onvolwasse diere was verkry in 2010 vanaf 

plaaslike vissermanne en volwasse diere was in 2011 gekollekteer deur gebruik te maak van ‗n 

kommersiële garnaal vissersboot.  Analise van die mtCR volgorde bepaling het gewys dat daar 

‗n hoë haplotipiese diversiteit (P. monodon; h = 0.9996 ± 0.0010; F. indicus; h = 0.9998 ± 

0.0015; M. monoceros; h = 0.9815 ± 0.0110) vir al drie spesies bestaan.  Genetiese differensiasie 

resultate vir elke spesie, bepaal deur ‗n AMOVA toets, dui op geen beduidende bevolking 

differensiasie nie (P. monodon; ΦST = 0.000, = p > 0.05; F. indicus; ΦST = 0.000, = p > 0.05; M. 

monoceros; ΦST = 0.0164, = p > 0.05) en paarsgewyse ΦST statistiek tussen die lokaliteite waar 
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monsters geneem was, dui op geen ruimtelike differensiasie van die vroulike gene in al drie 

spesies nie.  Hierbenewens is die mtDNS datastel van P. monodon (i.e. n = 103) uitgebrei deur 

ses polimorfiese kern mikrosatelliete in te sluit.  Die patroon van mtCR panmixia was ondersteun 

deur die mikro-satelliet analise van P. monodon waar die AMOVA (i.e. RST = 0.00113, = p > 

0.05), paarsgewyse RST statistiek (i.e. RST = 0.0000-0.0223, = p > 0.05) en STRUCTURE 

bevestig het dat daar totale afwesigheid is van genetiese differensiasie tussen alle vergelyk-te 

lokaliteite.  Gebaseer op die afwesigheid van genetiese bevolking-struktuur kan elk van die drie 

spesies beskou word as ‗n enkele bestuurseenheid deur die Malindi-Ungwanabaai area.  Die 

bestuurstrategieë vir garnaal vissery aktiwiteite in die baai moet dus steun op ander faktore as 

genetiese meta-bevolking. Belangrike faktore om in ag te neem is seisoenale garnaal werwing en 

verspreidings patrone, ekosisteem funksionering en sosio-ekonomiese implikasies van vissers 

gemeenskappe en kommersiële visserymaatskappye.  
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CHAPTER 1 

General introduction 

1.1 Zoogeography and systematics of penaeid prawns 

The terms prawns or shrimps are synonyms and are used interchangeably in different parts of the 

world. Penaeid prawns (Crustacea, Decapoda, Penaeidae) have a global distribution and occur in 

four major marine basins including the Indo–West Pacific, eastern Pacific, the western and the 

eastern Atlantic (Holthuis 1980; Dall et al. 1990). The Indo–Pacific region has a larger 

continental shelf area and more suitable habitat when compared to the Atlantic, and this has 

given rise to higher marine species diversity (i.e. about five times more species) and increased 

abundance (Dall et al. 1990; Briggs 1999).  

The four marine basins are also regarded as bioregions (Spalding et al. 2007) and some 

features can be put forward separating some of the regions. For instance, the eastern Atlantic is 

separated from the western Atlantic by deep oceanic waters. Similarly, the western Pacific is 

separated by deep oceanic waters from the eastern Pacific, and isolated islands and cold water 

masses add further diversity. There is no documented barrier separating the Indian and west 

Pacific Oceans, and this region is regarded as a single and complex bioregion, the Indo–West 

Pacific (Briggs 1999). Contemporary barriers (including land masses, temperature gradients, 

ocean currents and ocean deeps) can all restrict the dispersal of pelagic larvae or eggs by ocean 

currents, or migrations by fish or benthic organisms such as penaeid prawns, giving rise to 

structured populations and eventually to speciation. Similarly, vicariance events (formation of 

physical barriers which disconnect previously continuous regions) such as seaway closures (e.g. 
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closure of the Tethys seaway between the Atlantic and Indo-Pacific via the Mediterranean during 

the Oligocene/Miocene [Hrbek and Meyer, 2003] or of the Isthmus of Panama [Keigwin, 1978; 

Coates et al. 1992]) in the marine environment can limit dispersal and result in the formation of 

genetic differentiations among taxa (Teske et al. 2007).   

The taxonomic revision of the family Penaeidae Rafinesque–Schmaltz 1815 recognises 

17 extant genera (Table 1), with at least 200 extant species across the four basins (Dall et al. 

1990; Chan et al. 2008). Many of the genera inhabit shallow waters with the exception of 

Metapenaeopsis, Parapenaeus and Penaeopsis which are distributed in deeper oceanic waters 

(Dall et al. 1990). The Indo–West Pacific (IWP) is characterized by 11 of the 17 genera (Table 

1). Moreover, nine of the 11 genera constitute about 24 species which occur in the South West 

Indian Ocean (SWIO) (Table 1; Dall et al. 1990). Endemism in the SWIO is however extremely 

low and most of these taxa have wide distributions (Dall et al. 1990).   

The latest taxonomic revision of the family Penaeidae (Pérez Farfante and Kensley 1997) 

suggests a total of 26 genera (Table 1); in the revision Trachypenaeus was divided into five 

genera and Penaeus into six. Several phylogenetic analyses using mitochondrial fragments (e.g. 

Baldwin et al. 1998; Maggioni et al. 2001; Lavery et al. 2004; Quan et al. 2004; Voloch et al. 

2005; Chan et al. 2008), nuclear genes (Ma et al. 2009) and a combination of mitochondrial and 

nuclear genes (e.g. Ma et al. 2011) have questioned the validity of the classification by Pérez 

Farfante and Kensley (1997). Based on available phylogenetic evidence, it is clear that 

taxonomic revision, especially for the traditional genus Penaeus (currently including Penaeus, 
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Fenneropenaeus, Litopenaeus, Farfantepenaeus, Melicertus and Marsupenaeus) is needed (Dall 

2007; Flegel 2007; 2008; Chan et al. 2008; Ma et al. 2011). 

Table 1. The taxonomy of the family Penaeidae showing the old and the latest taxonomic 

revisions.  The genera occurring in the IWP and SWIO regions are listed. The penaeidae species 

inhabiting the SWIO waters are listed 
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Old genera  

(Dall et al. 1990) 

Added genera  

(Pérez Farfante and  

Kensley 1997)  

IWP genera SWIO genera SWIO species 

Atypopenaeus Farfantepenaeus Atypopenaeus Macropetasma Macropetasma africanus Balss 1913 

Macropetasma Fenneropenaeus Macropetasma Metapenaeopsis Metapenaeopsis hilarula De Man 1911 

Metapenaeopsis Litopenaeus Metapenaeopsis Metapenaeus Metapenaeopsis mogiensis M. J. Rathbun 1902 

Metapenaeus Marsupenaeus Metapenaeus Parapenaeopsis Metapenaeopsis scotti Champion 1973 

Parapenaeopsis Melicertus Parapenaeopsis Parapenaeus Metapenaeopsis provocatoria Racek and Dall 1965 

Parapenaeus Megokris Parapenaeus Penaeopsis Metapenaeopsis quiquedentata De Man 1907 

Penaeopsis Miyadiella Penaeopsis Trachypenaeopsis Metapenaeus monoceros Fabricius 1798 

Trachypenaeopsis Trachysalambria Trachypenaeopsis Trachypenaeus Metapenaeus stebbingi Nobili 1904 

Trachypenaeus Rimapenaeus Trachypenaeus Penaeus Parapenaeopsis acclivirostris Alcock 1905 

Penaeus  Penaeus  Parapenaeus fissoides Crosnier 1985 

Heteropenaeus  Heteropenaeus  Parapenaeus investigatoris Alcock and Anderson 1899 

Protrachypene    Parapenaeus longipes Alcock 1905 

Xiphopenaeus    Parapenaeus sextuberculatus Kubo 1949 

Artemesia    Penaeopsis balssi Ivanov and Hassan 1976 

Tanypenaeus    Trachypenaeopsis richtersii Miers 1884 

Funchalia    Trachypenaeus curvirostris Stimpson 1860 

Pelagopenaeus    Trachypenaeus sedili Hall 1961 

    Penaeus monodon Fabricius 1798 

    Penaeus canaliculatus Olivier 1811 

    Penaeus indicus H. Milne Edwards 1837 

    Penaeus japonicus Bate 1888 

    Penaeus latisulcatus Kishinouye 1896 

    Penaeus marginatus Randall 1840 

    Penaeus semisulcatus De Haan 1844 

 

 

1.2 Reproduction and life history characteristics of penaeid prawns 

Penaeid prawns can roughly be divided into two groups based on the morphology of the 

thelycum: genera with a closed thelycum (e.g. Penaeus, Fenneropenaeus, Marsupenaeus, 

Melicertus, Farfantepenaeus and Metapenaeus); and those with an open thelycum (e.g. 
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Litopenaeus). The term thelycum (woman–like) in penaeids refers to a structure usually found in 

female prawns and its function is to receive and store male spermatophores during mating. An 

open thelycum has ridges and protuberances to allow for the attachment of spermatophores, 

whereas a closed thelycum has lateral plates which lead into a seminal receptacle where 

spermatophores can be inserted (Primavera 1979; 1985; Yano et al. 1988).  

Reproduction in penaeids is through copulation and their mating behaviour begins with 

an approach, crawling, chasing and finally insertion/attachment of the male spermatophore into 

the female thelycum (Alfaro-Montoya 2010). Mating behaviour differs between the two groups: 

species with a closed thelycum mate when the gonads of moulted females are still immature, 

whereas those with an open thelycum mate after ovarian maturation, when females are at an 

intermolt stage. Irrespective the shape of the thelycum, fertilization is always external. 

The life cycles of all extant species of the family Penaeidae involve eggs, planktonic 

larvae (with naupliar, protozoeal, mysis, postlarvae stages), followed by juvenile and adult 

stages. Four types of life cycles are recognized and these depend on habitat preferences among 

postlarvae, juveniles and adults and the nature of the eggs (either demersal or pelagic; Dall et al. 

1990). Type I represents a life cycle that is exclusively estuarine. The postlarve of type I species 

migrate to upstream waters that are characterised by lower salinities where they feed and grow 

before recruiting back to estuarine waters of higher salinities where they join adult populations. 

Type II species require both estuarine and offshore marine waters to complete their life cycle; the 

post–larvae of this group prefer estuaries or estuarine–like environments, whereas the juveniles 

and sub–adults emigrate from estuaries to offshore adult breeding grounds (Forbes and 

Demetriades 2005). Species with a Type III life cycle are highly restricted to sheltered inshore 
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waters, preferably those with higher salinities, whereas Type IV species complete their entire life 

cycle in offshore waters (Dall et al. 1990).  

Most Penaeus and Metapenaeus species have a Type II life cycle, in which larval, 

juvenile and adult migrations between estuaries and offshore areas play a major role.  Larvae and 

postlarvae can migrate both passively (along prevailing currents) and actively (vertical 

movements), but they probably don‘t swim against prevailing currents. Larvae are thus 

transported by oceanic currents while juveniles and adults migrate by drifting in prevailing 

currents, swimming against them, or by benthic migrations (Dall et al. 1990; Criales et al. 2005; 

Vance and Pendrey 2008). 

 

1.3 Study species 

The three species selected for this study were P. monodon, F. indicus and M. monoceros 

(Plates1–3). Penaeus mondon and F. indicus are restricted to the Indo–West Pacific whereas M. 

monoceros has a wider distribution spanning the Indo–West Pacific and the Eastern Atlantic 

bioregions (Dall et al. 1990). At the local scale, the three species co–occur along the Kenyan 

shallow water continental shelf, but they are more abundant in the Malindi–Ungwana Bay 

(MUB) (Wakwabi and Jaccarini 1993; Mwaluma 2002).  Identification of the three species can 

easily be achieved by using the FAO species catalogue (Holthuis 1980). They differ in general 

body colour patterns, rostrum shape and structure (presence/absence of rostral teeth on the 

ventral and dorsal sides) and thelycum (even though they are all closed thelycum species) for 

females or petasma for males (e.g. Plates1–3) throughout their range of distribution. Some 
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morphological differences have been suggested between Western Indian Ocean and Western 

Pacific populations of P. monodon (You et al. 2008).  

 

Plate 1. Dorsal view of Penaeus monodon photographed during the commercial prawn trawling 

expedition in the Malindi–Ungwana Bay in 2011. 
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Plate 2. Dorsal view of Fenneropenaeus indicus photographed during the commercial prawn 

trawling expedition in the Malindi–Ungwana Bay in 2011. 
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Plate 3. Lateral view of Metapenaeus monoceros photographed during the commercial prawn 

trawling expedition in the Malindi–Ungwana Bay in 2011. 

 

Adult females of P. monodon, F. indicus, and M. monoceros spawn in offshore waters 

where eggs hatch into planktonic larvae that progress through a series of developmental stages 

over a period of typically 14–21 days (Dall et al. 1990; Niamaimandi et al. 2007). Postlarvae 

enter coastal and estuarine nursery areas to feed and grow to juvenile stages; these then recruit to 

offshore waters to join adult populations (Dall et al. 1990). Whereas M. monoceros is a habitat 

generalist (inhabits muddy and sandy substrates, seagrass meadows and mangrove creeks), P. 
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monodon and F. indicus co–occur in more limited habitat types, such as sandy and muddy 

substrates, and mangrove creeks (Sheridan and Hays 2003; Macia 2004). All three species have 

high fecundity, and may produce several broods throughout their lifetime (Nandakumar 2001; 

Jayawardane et al. 2002; Mgaya and Teikwa 2003).   

 

1.4 Economic importance and management of Kenyan prawn fisheries 

Prawns are the economic mainstay of fisheries along the Kenyan coast, and artisanal and 

commercial fisheries are focussed on the MUB area. Five co–occurring species are harvested: F. 

indicus, 55–70% of landings; M. monoceros, 10–15%; P. monodon, < 10%; P. semisulcatus, < 

10%; and M. japonicus, < 5% (Fulanda et al. 2011). The prawn fisheries contribute to the local 

economy through job creation, food security and as a source of foreign earnings (Kenya 

Fisheries Department 2006a; van der Elst et al. 2009). For instance, during 2006, 10,726 

artisanal fishers were active, and > 250,000 Kenyan people depended on marine organisms for 

food security and commerce (Kenya Fisheries Department 2006b). It is therefore important that 

the prawn resources of MUB are managed sustainably.     

 The MUB is traditionally divided into three main fishing zones: an artisanal prawn 

fishing zone (also called a trawling exclusion zone) between zero and five nautical miles (nm) 

from the coast; a commercial trawling zone between five and 12 nm;  and an Exclusive 

Economic Zone (EEZ) between 12 and  200 nm (Cap 378; Kenya Gazette 1999; 2000; 2001). 

However, a recently gazetted prawn fishery management plan designated the area between zero 
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and three nm from the shore to artisanal fishing, while permitting commercial fishing further 

offshore than three nm (Kenya Gazette 2011).  

Artisanal and commercial trawl fisheries have been managed by the Kenyan Department 

of Fisheries since 1963 and 1970, respectively (FAO 1971), and have been faced with conflicts 

among resource users. Conflicts stemmed from poorly defined prawn fishing zones, gear 

damage, use of environmentally damaging fishing gears, and reduced prawn catches and 

revenues (Fig. 1) (McClanahan et al. 2005; Munga et al. 2012). The commercial trawl fishery 

was suspended between 2006 and June 2011, whereafter trawling was continued. The motivation 

for the closure was to recover prawn catch rates, and to allow for scientific investigation to assist 

in fisheries management decisions. The present genetic population analysis of the three dominant 

prawn species in the MUB fisheries should be seen in this light.  
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 Fig. 1. Total annual prawn landings (a) and revenues (b) obtained from artisanal and commercial 

trawl fisheries in the Malindi–Ungwana Bay between 1990 and 2005, just prior to the closure of 

the commercial trawl fishery. Data were obtained from the Kenya Fisheries Department. 

1.5 The study area 

The MUB starts from Malindi in the south and extends to Ras–Shaka in the north, and lies 

between latitudes 2°30´–3°30´S and longitudes 40°00´– 41°00′E (Fig. 2). The bay is 

characterised by a shallow continental shelf that ranges from 15 to 60 km offshore (Kitheka 
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2002). The Sabaki and Tana rivers are the largest in Kenya and discharge their waters into the 

MUB; both rivers provide estuarine environments at their outflows (Kitheka 2002; 2005), and 

also deposit sand and mud sediments in the bay, thus maintaining favourable prawn habitats.  

The MUB region is influenced by the South East (SE) monsoon winds between April and 

October and the North East (NE) monsoon winds between November and March (McClanahan 

1988). Ocean currents that influence the MUB (Fig. 2) are the northerly flowing East Africa 

Coastal Current (EACC) and the southerly flowing Somali current (SC). The Somali current 

reverses its flow direction between April and October to align itself with the SE monsoonal wind 

direction (McClanahan 1988). The area where the SC and EACC converge marks the beginning 

of an offshore South Equatorial Counter Current (SECC). These oceanographic features of the 

MUB presumably facilitate prawn larval dispersal and mixing, with implications for recruitment 

patterns and genetic population structure. Nevertheless, it remains unclear whether prawn 

populations in the MUB comprise of genetically panmictic populations, or whether distinct 

metapopulations exist for specific estuarine / offshore assemblages. 
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Fig. 2. Map of the Malindi–Ungwana Bay region, showing the Tana and Sabaki Rivers, as well 

as a schematic representation of the Somali Current, East Africa Coastal Current, and the South 

Equatorial Counter Current. Sampling stations for prawns (black filled circles) were at Ngomeni 

(NGO), Kipini (KIP), mid station (MDS), and offshore of Sabaki (OFS) and Kipini (OFK).  
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1.6 Recruitment patterns, genetic diversity and population structure in the marine 

environment 

Marine species with a planktonic larval dispersal phase (e.g. the three study species) can be 

considered to be demographically open because larvae may originate from local or 

geographically distant sources (Caley et al. 1996; Lowe and Allendorf 2010). This means that 

local nursery grounds can receive larvae from many sources, which recruit to local adult 

populations. This pattern in larval dispersal, settlement and recruitment has implications for 

genetic population structure and fisheries dynamics. A comparative genetic analysis of 

genealogical relationships among larvae and adult genes (e.g. haplotypes) is appropriate to assess 

the geographic origin of larvae and/or juveniles (e.g. Bunn and Hughes 1997; Malhi et al. 2002; 

Silva–Rocha et al. 2012). 

 Genetic variation is an important element with regard to the ability of species to adapt 

and evolve and this measure is also used by conservation officials to form management opinions 

(Schwartz et al. 2007; Reynolds et al. 2012). The neutral population genetic theory suggests that 

genetic variation within species at mutation–random drift equilibrium is correlated with effective 

population size. However, other factors that could affect genetic diversity include; differences in 

evolutionary rate between genes and species, life histories, distribution, abundances, bottlenecks, 

overfishing exploitation and founder effects (Amos and Harwood 1998; Bromham 2009; Leffler 

et al. 2012). 

The spatial pattern in which genetic variation is organised within and among animal 

populations is referred to as genetic population structure, and in the marine environment it has 

been reviewed extensively by Laikre et al. (2005) and Waples and Gaggiotti (2006). Three 
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general patterns are recognized; no differentiation (homogeneous populations), continuous 

genetic change (isolation by distance; Wright 1943) and complete differentiation (island model; 

Wright 1931).  

In the absence of genetic differentiation, genetic variation within a species may be 

homogeneous over large geographic ranges, and could extend to its entire distribution. In this 

case, geneflow or effective migrations between geographic areas would be extensive and 

individuals within a species might migrate and randomly mate without constraints (Laikre et al. 

2005). Sometimes, species belonging to this pattern could have a single geographic spawning 

area where mature adults gather to reproduce before dispersing to adult feeding grounds.   

In a continuous change in genetic structure scenario (i.e. isolation by distance), random 

mating and geneflow is extensive between individuals that are geographically close to each 

other. However, individuals that occur at extreme opposite ends of a  species distribution tend to 

have a limited chance of mating, thus leading to an increase in the change in allele frequencies as 

geographic distances become greater.  

In the complete genetic differentiation scenario (island model), organisms are organised 

into systems (local populations) where gene flow among them is limited by factors such as 

physical barriers (e.g. Williams and Benzie 1998; von der Heyden et al. 2011), oceanographic 

barriers (e.g. Gilg and Hilbish 2003) or reproductive isolation (e.g. Dai et al. 2000). Given 

enough time, populations separated from their most recent common ancestor (MRCA) without 

gene exchange may result in allopatric speciation. 

Shank et al. (2003) and Shanks (2009) suggested that animal species with an extended 

pelagic larval duration (PLD) would be more dispersive showing homogeneous genetic 
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population patterns (e.g. Crandall et al. 2010), even over very long distances (Groeneveld et al. 

2012), while brooding or live–bearing taxa and those with short PLD could exhibit genetic 

discontinuities over small geographic ranges (e.g. Hellberg 1996; Baird et al. 2012; Ledoux et al. 

2012). However, the link between PLD and population structure is not straightforward (Sponer 

and Roy 2002; Becker et al. 2007; Weersing and Toonen 2009; Faurby and Barber 2012), and 

life history characteristics alone are thus unlikely to explain genetic patterns among marine 

crustaceans (but see McMillen–Jackson and Bert 2003; Sivasundar and Palumbi 2010).  

Despite life history, sudden intraspecific genetic disjunctions can also occur in areas 

where interchange between individuals is constrained by factors associated with physical barriers 

and other environmental factors (e.g. sharp salinity gradients, deep waters and circular 

currents/eddies etc.) (Gilg and Hilbish 2003; von der Heyden et al. 2011). In the MUB, no 

barrier has yet been documented that may cause genetic differentiation among prawn 

populations, however it is interesting to report that a large–scale genetic population analysis of P. 

monodon indicated significant genetic differentiation of the Kenyan population when compared 

to western Madagascar (You et al. 2008). In addition, studies on P. monodon populations in the 

SWIO have shown a genetic break between Tanzania and western Madagascar (Duda and 

Palumbi 1999), and no genetic structure among populations in South Africa, Mozambique and 

Madagascar (Benzie et al. 2002). A previous genetic analysis of F. indicus indicated a general 

lack of genetic differentiation among populations from South Africa, Tanzania and Oman, using 

Cytochrome c oxidase sub–unit 1 gene (COI) sequences (Querci 2003). Conversely, Random 

Amplification of Polymorphic DNA (RAPD) analysis indicated genetic differentiation among 
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the above three geographic units (Querci 2003). This latter result emphasised that using different 

genetic markers can provide contrasting insights, based on the level of polymorphism. 

 Presently, there are two main classes of DNA markers frequently used in 

phylogeographic investigations; those derived from mitochondrial DNA (e.g. mitochondrial 

control region fragment) and those obtained from nuclear DNA (e.g. nuclear microsatellite; 

reviewed in Sunnucks 2000; Selkoe and Toonen 2006; White et al. 2008; Fromentin et al. 2009; 

Galtier et al. 2009). The selection of genetic markers to be used in population genetics studies 

depends on individual marker characteristics (e.g. sample requirement, reproducibility, mode of 

inheritance and scoring, level of polymorphism) and the nature of the research questions being 

addressed (Sunnucks 2000; Karl et al. 2012).  

Recently, the presence of paralogous sequences (either due to Numts [nuclear insertions 

of mitochondrial sequences], duplication of the control region, or heteroplasmy) have been 

suggested for P. monodon (Walther et al. 2011). Paralogous sequences may not have similar 

evolutionary rates when compared with mtDNA genes, thus accidental inclusion of these 

sequences into analysis may introduce erroneous interpretations. Thus it was important to ensure 

that paralogous sequences were not present in the DNA of P. monodon analysed in the present 

study.    

 

1.7 Aims of the study 

The aims of this research were to investigate genetic population structure of P. monodon, F. 

indicus and M. monoceros in the Malindi–Ungwana Bay fishing area in Kenya using 

mitochondrial DNA control region sequences and nuclear microsatellite loci. 
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1.7.1 Research Questions 

The following research questions were posed: 

1) Do juvenile and adult P. monodon, F. indicus and M. monoceros on offshore banks in the 

MUB originate from the local estuarine and/or nursery areas of Ngomeni and Kipini, or do they 

come from distant larval sources?  

The null hypothesis suggesting an offshore recruitment that originates from the two local nursery 

(local recruitment) areas of Ngomeni and Kipini was tested. The alternative hypothesis, that 

adults in the bay originate from distant sources, supposed that long–lived pelagic larvae might 

have drifted from afar in oceanic currents.  To test the above hypotheses, a genetic analysis of 

sequences (haplotypes) obtained from juveniles that occur in local estuaries and adults from 

offshore banks was undertaken.  

2) Do the prawn populations of MUB belong to a single mixed population, or is there genetic 

structure in the bay congruent with separate nursery grounds?  

The null hypothesis which suggests a lack of genetic differentiation was tested. The alternative 

hypothesis suggesting genetic differentiation in the bay supposed that physical/environmental 

factors (current systems) and life histories (habitat preferences) might have acted to separate 

populations. In the event of genetic differentiation between estuaries or among sampling sites; 

the alongshore ocean currents occurring in the bay (detailed in section 1.5) is not responsible for 

mixing/homogenising populations; perhaps due the less migratory nature of the benthic 
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juveniles. In addition, in the event of genetic differentiation for the habitat specific species (P. 

monodon and F. indicus) but not for the habitat generalist species (M. monoceros); differences in 

life histories (habitat preferences) should then be invoked to explain for such observations. To 

test the above hypotheses, analyses of the mitochondrial DNA control region sequences were 

undertaken. In addition, microsatellite data for P. monodon were included to validate sequences 

results.   
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CHAPTER 2 

Materials and Methods 

2.1  Collection of samples and DNA extraction 

Sampling localities were chosen to represent the MUB prawn populations that support both 

artisanal and commercial trawl fisheries, and to include juvenile and adult cohorts that are 

presumably connected to each other through larval dispersal processes and migrations.  A total of 

five sites were sampled; Ngomeni (NGO), Kipini (KIP), mid station (MDS), offshore of Sabaki 

(OFS) and offshore of Kipini (OFK) (Fig. 2). Ngomeni sampling station is situated far from the 

mouth of the Sabaki river whereas Kipini station is located within the river mouth (Fig. 2). 

Prawns sampled for this study included juveniles and adults of P. monodon, F. indicus and M. 

monoceros, and between seven to 28 specimens per species were collected from each of the five 

localities (Fig. 2 & Table 3). Juveniles were obtained during 2010 from local fishers in NGO and 

KIP (Fig. 2). Adults were obtained from MDS, OFS and OFK (Fig. 2) during 2011 using a 

commercial prawn trawler under survey SWIOFP2011C201a. Total genomic DNA was extracted 

from ethanol (96%) preserved muscle tissues using the Wizard® SV Genomic DNA Extraction 

Kit (Promega, Madison, WI, USA) following the manufacturers instructions and stored at –20°C 

prior to further analysis. 
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Table 2. Details of geographic localities within Malindi–Ungwana bay from where genetic 

prawn samples were obtained. The start and end positions of offshore trawl transects are 

included 

   Geographic Coordinates (Latitudes and Longitudes) 

Locality Abbreviation Transects Start_lat. (S) End_lat. (S) Start_Long. (E) End_Long. (E) 

       

Kipini KIP  — 02° 31' 688"  — 040° 31' 388"  — 

Ngomeni NGO  — 02°59' 994"   — 040°10' 588"  — 

Mid station MDS 1—2 02°44' 708"  02°42' 862"  040°13'456" 40°14' 882"  

" " 1—3 02°39' 802"  02°41' 709"  040°16' 571"  40°14' 989"  

Offshore of Kipini OFK  1—5 02°34' 591"  02°35' 513"  040°25' 25"  40°22' 862"  

" " 1—6 02°33' 577"  02°34' 138"  040°29' 208"  40°26' 644"  

Offshore of Sabaki OFS  1—1 03°11' 078"  03°10' 914"  040°08' 502"  40°08' 601"  

" " 3—3 03°11'' 488"  03°90' 747"  040°10' 943"  40°12' 154"  

 

2.2 PCR amplification and sequencing of mtDNA control region (mtCR) fragment 

PCR amplification of the mtDNA control region of P. monodon was performed using the species 

specific primer pair PmCON–2F and PmCON–2IR published by You et al. (2008). The thermal 

PCR profile for P. monodon in this study was adopted from You et al. (2008) without 

modifications. The PCR amplification of F. indicus and M. monoceros control region fragment 

used the penaeid prawns universal primers. The forward primer DLA was published by Chu et 

Stellenbosch University  http://scholar.sun.ac.za



23 

 

al. (2003) and the reverse primer DLB by McMillen–Jackson and Bert (2003). The thermal 

profile for the latter two species was one cycle of 3 minutes at 95°C; 35 cycles each 50 seconds at 

95°C; 60 seconds at 48°C, 90 seconds at 72°C, and one cycle of 5 minutes at 72°C. PCR products 

were gel purified and the reverse strand was sequenced using the BigDye terminator chemistry 

(Applied Biosystems) and analysed on an ABI 3100 automated sequencer.  

In addition, a subset of P. monodon DNA samples sequenced previously using the 

species specific primers, were re–amplified and sequenced using the universal primers (i.e. PCR 

amplification and sequencing of the control region for each of the selected DNA samples was 

conducted on separate reaction tubes for each of the two primer pairs. This was to ensure two 

control region sequences were generated from a single DNA sample). This was conducted 

specifically to confirm whether sequences generated using the You et al. (2008) primers would 

amplify the authentic control region, or instead the paralogous genes as was recently reported by 

Walther et al. (2011).  

2.3 Mitochondrial DNA data analysis 

SEQUENCHER v.4.8 (Gene Codes, Corp., Ann Arbor, Michigan) was used to edit all 

sequences, which were then aligned using Clustal W (Thompson et al. 1994) as implemented in 

MEGA v.5 (Tamura et al. 2011).  The correctness of specimens sampled as belonging to each of 

the three species was confirmed by blasting each of the mtCR sequences using GenBank 

(http://blast.ncbi.nlm.nih.gov). When sequences blasted to nothing (i.e. sequence unavailable on 

database for that species), the sequences were aligned and a phylogenetic analysis (Neighbour 

Joining trees) using MEGA v.5 (Tamura et al. 2011) was used in order to see how such 

sequence(s) clustered with others. When more than one clade was observed, whole prawn 
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specimens were compared morphologically before proceeding with further analyses. Data for 

each species was treated separately throughout the analysis. DNASP v.5.0 (Librado and Rozas 

2009) was used to prepare input files for subsequent analyses. Genetic diversity summary 

statistics were calculated for juveniles (NGO & KIP) and adult (OFK, MDS & OFS) sampling 

localities. Moreover, sampling localities (including both juveniles & adults) were also combined 

to obtain overall species specific diversity statistics. Sampling localities were also treated as 

natural groupings in order to conduct genetic differentiation analyses. 

Genetic diversity estimates [i.e. number of polymorphic sites (s), number of haplotypes 

(k), haplotype diversity (h) and nucleotide diversity (π)] were obtained from ARLEQUIN v.3.11 

(Excoffier et al. 2005). The predefined groupings (i.e. localities) were tested for genetic 

differentiation using ARLEQUIN v.3.11 (Excoffier et al. 2005) under the null assumption of no 

differentiation. First, pairwise ΦST statistics among sampling localities (which takes into account 

haplotype frequencies and genetic distances information) were calculated and significance was 

obtained using 10,000 random permutations. Second, analysis of Molecular Variance (AMOVA) 

was performed and the significance level of the population fixation index ΦST was obtained 

through a nonparametric permutation procedure (Excoffier et al. 1992) with 10,000 

permutations. Within species evolutionary divergence between sequences (haplotypes) was 

estimated using the uncorrected p–distance model (uncorrected site changes between haplotypes) 

using MEGA v.5 (Tamura et al. 2011). We determined evolutionary relationships among 

juvenile and adult haplotypes in each of the three datasets (species wise) using a statistical 

parsimony network (Templeton et al. 1992) using TCS v.1.21 (Clement et al. 2000), and 

enforcing a 95% connection limit. The above networks (showing evolutionary relationships 

Stellenbosch University  http://scholar.sun.ac.za



25 

 

among juvenile and adult haplotypes) were used to give indications of the recruitment pattern for 

each of the three species.  

2.4 PCR amplification and genotyping of Penaeus monodon 

Microsatellite analyses were performed on P. monodon and six out of 10 polymorphic di–

nucleotide microsatellite loci developed for this species were successfully amplified (Brooker et 

al. 2000; Pan et al. 2004). Microsatellite loci were grouped into three panels (groups) for 

multiplex PCR amplifications. This grouping relied on fluorescent dyes of the forward primer 

(e.g. FAM, VIC, NED or PET), published allelic size ranges and annealing temperatures. Panel 1 

included loci PM09 (accession number AF068826), PM25 (AF068827), PM27 (AF068828) and 

PM2345 (AY500860); Panel 2 consisted of loci PM138 (AY500853), PM3854 (AY500863) and 

PM1713 (AY500858) and Panel 3 consisted of PM580 (AY500856), PM3945 (AY500864) and 

PM4018 (AY500865).  

Multiplex PCR amplification was carried out in a 10μl reaction final volume containing 

1μl of (5–50ng) template DNA, 6μl of Qiagen multiplex PCR master mix, 2μl of ddPCR H2O 

and 1μl of primer mix (0.2μM final concentration). The annealing temperature (Ta°C) was 

57.3
o
C for panel 1 and 3, and 58.0

o
C for panel 2. The thermal profile followed that of Pan et al. 

(2004). The internal size standard GenescanTM 500Liz (Applied Biosystems) was added to the 

amplified PCR products and run in an ABI PRISM 3730 genetic analyzer (Applied Biosystems). 

Microsatellite alleles were obtained using GeneMapper
TM

 software version 3.7 (Applied 

Biosystems) using the size standard GS500(–250)LIZ. Allele scoring was done automatically 

from established bins and edited manually. Individuals that had ambiguous peaks were re–
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amplified using positive and negative controls (i.e. one sample for each case) and rescored. 

About 20% of individuals were randomly chosen for re–amplification and genotyping so as to 

determine consistency of results. The scored alleles were all verified by an independent 

researcher before proceeding to further analysis. 

2.5 Microsatellite data analysis 

Genetic diversity summary statistics were estimated for each sampling locality and also for the 

combined localities. The programme GENAIEX v.6.41 (Peakall and Smouse 2006) was used to 

perform quick exploratory analyses as well as to prepare input files for other software. 

 Genotypic linkage disequilibrium (LD) between pairs of loci was determined as 

implemented in FSTAT v.2.9.3 (Goudet 2002). We used sequential Bonferroni correction (Rice 

1989) to adjust p values for multiple tests when a significant level was observed. Deviations 

from Hardy–Weinberg equilibrium (HWE) were determined using GENEPOP v.4.1 (Rousset 

2008), where the Wright‘s (1951) inbreeding coefficient (FIS) with heterozygosity deficit as the 

alternate hypothesis was used. Genotyping errors which normally take the form of null alleles 

(alleles that fail to be detected through PCR amplification), stuttering and large allele dropouts 

were investigated using MICROCHECKER v.2.2.3 (Van Oosterhout et al. 2004). When null 

alleles were suspected, their frequencies were estimated using the Oosterhout and sequential 

Bonferroni method (Rice 1989).   

 Genetic diversity summary statistics [i.e. number of alleles (NA), observed 

heterozygosity (Ho) and expected heterozygosity (He) were obtained using the 

MICROSATELLITE TOOLKIT (Park 2001). Allelic richness (AR) which is not affected by 
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sample sizes was obtained as implemented in FSTAT v.2.9.3 (Goudet 2002). The rarefaction 

method (Petit et al. 1998) was used to obtain AR.  

 Population differentiation was examined using ARLEQUIN v.3.1 (Excoffier et al. 2005) 

where pairwise RST values were used to test the null hypothesis of panmixia. Significance levels 

were obtained using the exact test of population differentiation which is robust even when 

sample sizes are small and also when alleles with low frequencies are included (Raymond and 

Rousset 1995). The same program was also used to perform an analysis of Molecular Variance 

(AMOVA; Excoffier et al. 1992). To determine the number of homogenous genetic clusters (K), 

the program STRUCTURE v.2.3 (Pritchard et al. 2000) was used. The Admixture model 

(Pritchard et al. 2000) in combination with the correlated allele frequencies model (Falush et al. 

2003) was used. A burnin length of 1,000,000 and 10,000 Markov chain Monte Carlo (MCMC) 

samples and sequential independent runs were performed with values of K ranging from one to 

five. However, because the structure program does not automatically give the correct number of 

possible K present in the dataset (Kalinowski 2011), we identified the correct K through the ad 

hoc guidelines suggested by the STRUCTURE manual v. 2.3 and the statistic (delta K) as 

suggested by Evanno et al. (2005). 
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CHAPTER 3 

Results 

3.1 Mitochondrial DNA data 

Penaeus monodon 

Electropherograms that were obtained from the two pairs of primers [PmCON–2F/PmCON–2IR 

(You et al. 2008) and DLA/ DLB (Chu et al. 2003; McMillen–Jackson and Bert 2003)] did not 

show any signs of double reads (evidence for co–amplification of pseudo genes and/or 

paralogous genes; Walther et al. 2011) and sequences for the same individuals were identical. 

Alignment of sequences to the mtCR fragment of You et al. (2008) produced a 570 base pair 

region of perfect matching for 129 specimens. A total of 126 haplotypes (k) were obtained 

(including three shared and 123 unique haplotypes) which were defined by a total of 120 

polymorphic nucleotide sites (s) (Table 3). All haplotypes were deposited in GenBank (accession 

numbers). There were 120 transitions and 32 transversions present in the aligned data set. 

Nucleotide frequencies estimated from the entire data set was A–T rich—i.e. A = 39.55%, T = 

39.46%, C = 11.61% and G = 9.38%. Haplotype diversity was generally high coupled to lower 

nucleotide diversity in each of the five localities; this pattern was consistent in the overall dataset 

(Table 3). The within species uncorrected sequence divergences between haplotypes (±SE) 

ranged from 0.2% ± 0.2% to 3.3% ± 0.7% (mean: 1.49% ± 0.18%).  

 Pairwise ΦST values among sampling localities were not significant (Table 4; ΦST ~0, p > 

0.05) and AMOVA supported the complete absence of genetic differentiation among localities 
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(i.e. Table 5; ΦST = 0, p > 0.05). The distribution and evolutionary relationships among juvenile 

and adult sequences (haplotypes) are illustrated in the TCS haplotype networks (Figs. 4 & 5). 

Haplotypes were not distributed according to a geographic pattern (Fig. 4), and in many 

occasions, haplotypes originating from a similar sampling locality were randomly connected 

among haplotypes originating from other sampling sites (Fig. 4). In this species also, the gene 

sequence of a few juvenile individuals were similar to those of adult specimens (shared 

haplotypes: Fig. 5).  

Fenneropenaeus indicus 

The DNA from a total of 96 specimens of F. indicus was PCR amplified and sequenced. 

Alignment of those sequences produced a region of 791 base pairs.  Ninety–five haplotypes 

(including one shared and 94 unique haplotypes) were obtained and deposited in GenBank 

(accession numbers). Haplotype nucleotide frequencies estimated from the overall population 

was A = 37.96%, T = 42.68%, C = 9.84% and G = 9.52%. High haplotype and lower nucleotide 

diversity values were observed in each of the five localities and this pattern was concordant with 

the combined dataset (Table 3). The within species uncorrected sequence divergences between 

haplotypes (±SE) ranged from 0.1% ± 0.1% to 7.1% ± 0.9% (mean = 1.48% ± 0.2%). Pairwise 

ΦST values for F. indicus among localities were not significant (Table 4; ΦST ~0, p > 0.05) and 

AMOVA supported the complete absence of genetic differentiation (i.e. Table 5; ΦST = 0, p > 

0.05). The distribution and pattern of evolutionary relationships among juvenile and adult 

haplotypes of F. indicus indicated by the TCS networks were similar to the observations made 
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for P. monodon above. However, three haplotypes of F. indicus were not connected to the main 

network (Figs. 4 & 5).  

 

Metapenaeus monoceros 

A total of 88 DNA samples from individuals prawns identified in the field as M. monoceros were 

PCR amplified and sequenced. However, only 71 sequences (Clade A; Fig. 6) were confirmed as 

belonging to M. monoceros and were thus available for analysis. The 71 sequences of authentic 

M. monoceros produced 774 base pairs for analysis, and a total of 61 haplotypes (including two 

shared and 59 unique haplotypes) were obtained and deposited in GenBank (accession numbers). 

The nucleotide frequencies estimated from the entire data set was A = 40.67%, T = 43.33%, C = 

7.97% and G = 8.03%. High haplotype and lower nucleotide diversity values were observed in 

each locality and from the combined dataset (Table 3). The within species uncorrected sequence 

divergence (±SE) ranged from 0.1% ± 0.1% to 4.7% ± 0.7% (mean = 1.1% ± 0.18%). Significant 

pairwise ΦST value between NGO and OFK populations was observed (Table 4) (i.e. ΦST = 

0.08809, p < 0.002), although the overall ΦST value for AMOVA did not support differentiation 

(i.e. Table 5; ΦST = 0.01638, p > 0.05). The TCS network for this species (Figs. 4 & 5) were 

comparable to those of P. monodon and F. indicus above, except that more juvenile and adult M. 

monoceros shared sequences than in the other two species (Fig. 5). 
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Table 3. Genetic diversity summary statistics of P. monodon, F. indicus and M. monoceros from 

five sampling localities in the MUB. Sample size (n), number of haplotypes (k), polymorphic 

sites (s), haplotype diversity (h) and nucleotide diversity (π) are shown. Abbreviations for 

sampling locations correspond to those in Table 2  

  

 

Genetic diversity indices 

Spp. Station n s k h π 

P
. 

m
o
n
o
d
o
n
 

KIP 28 65 28 1.0000 ± 0.0095 0.0139 ± 0.0070 

NGO 24 55 24 1.0000 ± 0.0120 0.0134 ± 0.0070 

MDS 28 70 28 1.0000 ± 0.0095 0.0163 ± 0.0090 

OFK 27 64 26 0.9972 ± 0.0111 0.0150 ± 0.0080 

OFS 22 67 22 1.0000 ± 0.0137 0.0153 ± 0.0080 

Total 129 120 126 0.9996 ± 0.0010 0.0147 ± 0.0076 

F
. 
in

d
ic

u
s 

KIP 25 92 25 1.0000 ± 0.0113 0.0161 ± 0.0083 

NGO 24 69 24 1.0000 ± 0.0120 0.0153 ± 0.0080 

MDS 15 53 15 1.0000 ± 0.0243 0.0149 ± 0.0080 

OFK 17 42 17 1.0000 ± 0.0202 0.0123 ± 0.0066 

OFS 15 51 15 1.0000 ± 0.0243 0.0143 ± 0.0077 
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Total 96 159 95 0.9998 ± 0.0015 0.0147 ± 0.0020 

M
. 

m
o
n
o
ce

ro
s 

KIP 22 30 20 0.9870 ± 0.0201 0.0094 ± 0.0051 

NGO 15 37 15 1.0000 ± 0.0243 0.0111 ± 0.0061 

MDS 7 16 6 0.9524 ± 0.0955 0.0090 ± 0.0055 

OFK 10 50 8 0.9333 ± 0.0773 0.0165 ± 0.0092 

OFS 17 32 16 0.9926 ± 0.0230 0.0099 ± 0.0055 

Total 71 91 61 0.9815 ± 0.0110 0.0109 ± 0.0057 

 

Table 4. Pairwise ΦST values for P. monodon, F. indicus and M. monoceros obtained from the 

mtCR. Pairwise RST values for P. monodon from the microsatellite data is given at the end of this 

table. Abbreviations for sampling locations correspond to those in Table 2. Significant tests are 

indicated by bold values (p < 0.05) 

 

Species Locality KIP NGO MDS OFK OFS 

P
. 

m
o
n
o
d
o
n
 

NGO 0.00000 —    

MDS 0.00000 0.00000 —   

OFK 0.00000 0.00000 0.00000 —  

OFS 0.00000 0.00000 0.00000 0.00367 — 

F
. 
in

d
ic

u
s 

NGO 0.00313 —    

MDS 0.00000 0.00000 —   

OFK 0.00000 0.00000 0.00000 —  

OFS 0.00000 0.00000 0.00000 0.00000 — 
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M
. 

m
o
n
o
ce

ro
s 

NGO 0.02396 —    

MDS 0.00000 0.02548 —   

OFK 0.04597 0.08809 0.00000 —  

OFS 0.00000 0.00000 0.0000 0.0362 — 

P
.m

o
n
o
d
o
n
(m

ic
ro

sa
t)

 NGO 0.00292 —    

MDS 0.00000 0.00441 —   

OFK 0.00047 0.02225 0.00807 —  

OFS 0.00719 0.01094 0.00743 0.01487 — 

 

Table 5. Results of the Analysis of Molecular Variance (AMOVA) of P. monodon, F. indicus 

and M. monoceros obtained from the comparisons among the five sampling localities using 

mtCR sequences. AMOVA obtained from the microsatellite data for P. monodon is given at the 

bottom of this table 

Species Source of  

variation 

Degree 

of 

freedom 

Sum  

of squares 

Variance  

contribution 

Percentage 

of variation 

ΦST p  

P
. 

m
o
n
o
d
o
n
 

Among 

localities 

4 13.6030 0.0000 0.0000 0.0000  (p = 0.9960) 

Within 

localities 

124 523.8780        4.1928 100.0000   

Total  128 537.4810         4.1928    

F
. 
in

d
ic

u
s 

Among 

localities 

4 20.5260 0.0000 0.0000 0.0000 (p = 0.8804) 

Within 

localities 

91 531.4740 5.8030 100.0000   
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Total 95 552.000 5.8030    
M

. 
m

o
n
o
ce

ro
s Among 

localities 

4 20.584 

 

0.06978 

 

1.6384 0.01638 

 

(p = 0.10861) 

 

Within 

localities 

66 276.487 

 

4.18919 

 

98.3616   

Total 70 297.070 

 

4.25897 

 

   

Species Source of  

variation 

Degree 

of 

freedom 

Sum  

of squares 

Variance  

contribution 

Percentage 

of variation 

RST p 

P
.m

o
n
o
d
o
n
(m

ic
ro

sa
t)

 

Among 

localities 

4 13.926 0.00305 0.1131 0.00113 (p = 1.00000) 

Within 

localities 

98 328.875 0.66337 2.4610   

Within 

individual

s 

103 209 2.02913 75.2770   

Total 205 551.801 2.69555    
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Fig. 3. Statistical parsimony network for P. monodon, F. indicus and M. monoceros. Haplotypes 

are proportionally represented by coloured circles. Colour represents geographical localities from 

where haplotypes were sampled. Intermediate haplotypes (i.e. black circles) represent unsampled 

or extinct haplotypes. A black line connecting haplotypes represents one mutational step.  
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Fig. 4. Statistical parsimony network for P. monodon, F. indicus and M. monoceros showing 

evolutionary relationships of juvenile and adult haplotypes. Haplotypes are proportionally 

represented by coloured circles. Colour represents maturity stages (juvenile/adults). Intermediate 
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haplotypes (i.e. black circles) represent unsampled or extinct haplotypes. A black line connecting 

haplotypes represents one mutational step. 

 

 3.2 Microsatellite data 

Penaeus monodon 

Optimization of the three multiplex PCR reactions allowed for successful amplification of six 

polymorphic loci. All six microsatellite loci in our study indicated significant deviations from 

Hardy–Weinberg Equilibrium (HWE) when samples were combined (Table 6). Nonetheless, 

there were 24 out of 30 cases where locality–locus significant HWE deviations were observed 

(Table 6). The significant deviations from HWE were all indicated by positive and significant 

inbreeding coefficient FIS relative to heterozygote deficiency. MICROCHECKER analysis 

suggested the presence of null alleles in each of the six loci and their estimated frequencies were 

0.1119 for PM25, 0.0489 for PM27, 0.1438 for PM580, 0.103 for PM3854, 0.1652 for PM3945 

and 0.1761 for PM4018. We did not detect any two loci that had significant genotypic linkage 

disequilibrium, thus each locus represents a unique evolutionary pathway. All loci except 

PM4018 were highly polymorphic as indicated by high values of allelic richness (AR) and 

expected heterozygosity (summarised in Table 6).  

Pairwise RST values among localities were not statistically significant [Table 4; (RST 

range = 0.000–0.0222, p > 0.05)]. AMOVA results indicated an absence of genetic differentiation 
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(Table 5). Structure analysis in combination with the more formal algorithms (Evanno et al. 

2005), suggested the presence of a single genetic population (K = 1; Fig. 5).  

 

Table 6. Genetic characteristics of six nuclear microsatellite loci for P. monodon samples 

obtained from five sampling localities. Abbreviations for sampling locations correspond to those 

in Table 2. NA = number of alleles, AR = allelic richness, Ho = observed heterozygosity, He = 

unbiased expected heterozygosity, FIS inbreeding coefficient (Bold FIS indicate significant 

departure from HWE) 

                                 Sampling localities 

Locus  KIP 

(n=21) 

NGO 

(n=20) 

MDS 

(n=22) 

OFK 

(n=20) 

OFS 

(n=20) 

Total 

(N=103) 

        

PM25 NA 17 14 14 16 17 20 

AR 16.710 14.000 13.622 16.000 17.000 15.119 

HO 0.857 0.650 0.636 0.700 0.750 0.718 

He 0.942 0.894 0.919 0.923 0.932 0.929 

 FIS 0.092 0.278 0.312 0.246 0.199 0.225 

        

PM27 NA 18 19 15 20 19 24 

AR 17.660 19.000 14.786 20.000 19.000 17.245 

HO 0.714 0.850 0.864 0.850 0.950 0.845 

He 0.942 0.937 0.938 0.954 0.94 0.938 

 FIS 0.246 0.095 0.081 0.111 -0.011 0.106 

        

PM580 NA 16 17 15 15 15 29 

AR 15.617 17.000 14.617 15.000 15.000 16.222 

HO 0.667 0.700 0.636 0.700 0.600 0.660 

He 0.916 0.933 0.932 0.922 0.906 0.926 

 FIS 0.277 0.255 0.323 0.245 0.344 0.289 

        

PM3854 NA 24 18 24 22 12 34 

AR 23.373 18.000 22.617 22.000 12.000 20.262 

HO 0.762 0.800 0.727 0.750 0.750 0.757 
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He 0.966 0.942 0.961 0.958 0.910 0.957 

 FIS 0.216 0.154 0.247 0.221 0.180 0.206 

        

PM3945 NA 18 16 14 19 17 32 

AR 17.613 16.000 13.797 19.000 17.000 18.645 

HO 0.476 0.650 0.546 0.700 0.800 0.631 

He 0.934 0.946 0.923 0.953 0.949 0.946 

 FIS 0.496 0.319 0.415 0.270 0.160 0.335 

        

PM4018 NA 7 4 6 6 6 10 

AR 6.95 4.000 5.727 6.000 6.000 5.983 

HO 0.381 0.650 0.318 0.350 0.550 0.447 

He 0.743 0.676 0.651 0.641 0.676 0.687 

 FIS 0.494 0.039 0.517 0.460 0.190 0.348 

        

AR  24.833 14.667 14.667 16.333 14.333 24.833 

HO /locality  0.643 0.717 0.621 0.675 0.733 0.676 

He /locality  0.907 0.888  0.887 0.892  0.886 0.897 

FIS  0.297 0.197 0.305 0.248 0.176 0.246 
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Fig. 5. Results from the structure analysis (performed using six microsatellite loci) showing 

genetic population clusters ranging from K = 1 to K = 5. Each colour represents a single inferred 

genetic cluster irrespective of the geographic origin of samples. Each individual is represented by 

a vertical bar. The numbers and proportions of colours (ranging from 0 to 1) contained in each 

individual indicates the extent of genetic admixture of that individual. 

K=1 

K=2 

K=3 

K=4 

K=5 
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CHAPTER 4 

Discussion 

4.1 Genetic diversity of P. monodon, F. indicus and M. monoceros in the Malindi–

Ungwana Bay, Kenya 

 Genetic diversity at the mtCR at each of the five localities was generally high for all three 

species analysed (i.e. P. monodon: h = 0.9972–1.0000; F. indicus: h = 1.0000; M. monoceros: h 

= 0.9333–1.0000). A high genetic diversity estimate per species was also observed when 

haplotypes from the five sampling localities were combined. High genetic diversity of penaeids 

in the MUB is congruent with previous results for P. monodon from IWP (h = 0.969–1.000; You 

et al. 2008), Farfantepenaeus duorarum from the southeastern United States (h = 1.000; 

McMillen–Jackson and Bert 2004) and Fenneropenaeus chinensis from northern China seas (h = 

0.9500–0.9900; Kong et al. 2010). The microsatellite analysis confirmed the high genetic 

diversity of P. monodon, based on heterozygosity levels (He = 0.886–0.907) and allelic richness 

(AR = 14.333–24.833).  

The high heterozygosity is comparable to P. monodon from IWP (He = 0.82–0.91; 

Waqairatu et al. 2012), but these values are much higher than those detected in the open 

thelycum Litopenaeus vannamei from the eastern Pacific (He = 0.241–0.388; Valles–Jimenez et 

al. 2005). The discrepancy might be due to a homozygote excess in the present data set, 

compared to a homozygote deficit in the data set used for L. vannamei by Valles–Jimenez et al. 

(2005). Also, the life histories of the two species differ in that the P. monodon life cycle involves 
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both marine and estuarine waters, making them highly migratory species. To the contrary, L. 

vannamei  inhabits predominantly estuarine waters, thus limiting its dispersal range. 

 The high genetic diversity of the three species reflects the large effective population sizes 

of these taxa (Ovenden et al. 2007; Leffler et al. 2012), high rates of mitochondrial evolution 

(Palumbi and Benzie 1991; Baldwin et al. 1998; McMillen–Jackson and Bert 2003) and at the 

nuclear microsatellite DNA (Chakraborty et al. 1997). Moreover, the neutral theory of molecular 

evolution (Kimura and Crow 1964; Kimura 1983) suggests that species with large effective 

population sizes tend to reach mutation–random drift equilibrium, thus such species retain high 

levels of genetic diversity. This is consistent with present observations. There was no genetic 

evidence of inbreeding or overfishing, both of which may be associated with a smaller effective 

population size (reviewed in Charlesworth and Wright 2001; Allendorf et al. 2008; Leffler et al. 

2012). Lower effective population sizes may lead to a faster rate of loss of variation (alleles) due 

to genetic random drift (Charlesworth 2009), which was not evident in this study.  

 Penaeus monodon, F. indicus and M. monoceros in the MUB exhibit some differences in 

habitat preference, and abundance and distribution patterns (see sections 1.2 and 1.4), but likely 

share similar mechanisms of dispersal and recruitment between the local estuaries and offshore 

habitats. Presumably, therefore, comparable levels of genetic diversities can be explained by a 

combination of similar life–history patterns, rates of molecular evolution and effective 

population sizes. Nevertheless, M. monoceros indicated the lowest haplotype diversity when 

compared to the other two species, despite its more generalist habitat preferences and higher 

abundance than P. monodon.  A possible explanation to the above genetic diversity patterns 

could be an imprint due to a difference in the timing of historical demographic events. For 
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instance, M. monoceros might have experienced a recent population bottleneck, or alternatively, 

the effective population size of M. monoceros might be lower than the other two species. Ramos-

Onsins et al. (2004) and Piganeau and Eyre–Walker (2009) showed that effective population 

sizes could vary even among closely related species. Another cause might be due to differences 

in mutation rates among the three taxa. Kumar et al. (2012) found that the rate of mitochondrial 

evolution is not uniform among penaeid species.  

 Exceptionally high numbers of unique haplotypes (as shown in the present study, 

especially for P. monodon and F. indicus)  appear to be relatively common among penaeid 

prawns, and were  previously found at the mtCR fragment of P. monodon (You et al. 2008; 

Waqairatu et al. 2012), F. duorarum (McMillen–Jackson and Bert 2004) and F. chinensis (Kong 

et al. 2010). This characteristic of penaeid prawns suggest that the rate at which neutral 

mutations are being incorporated into the mtCR fragment is very rapid, and given the possession 

of large effective population sizes usually associated with these taxa, a large number of 

haplotypes can thus be maintained. It is noteworthy that a high number of haplotypes can 

generally be expected in the highly evolving markers, but not from every gene in those species. 

This is because the intra–species evolutionary rate among mitochondrial genes is not similar. For 

instance, the mitochondrial Cytochrome c Oxidase Subunit 1 (CO1) gene of F. indicus did not 

show as many unique haplotypes (Querci 2003; De Croos and Palsson 2010).  

 The significant deviation from Hardy–Weinberg Equilibrium (HWE) indicated by 

heterozygote deficiency in this study is also not unique, and has been shown elsewhere for P. 

monodon (Brooker et al. 2000; Pan et al. 2004; You et al. 2008; Waqaitaru et al. 2012), and in 

other marine invertebrates (Raymond et al. 1997; Huang et al. 2000; Addison and Hart 2005) 
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and fish (Hoarau et al. 2002; Morin et al. 2009). As mentioned earlier, factors that can cause a 

microsatellite locus to deviate from HWE due to heterozygote deficits include stuttering, large 

allele dropouts, null alleles, selection, inbreeding and Wahlund effect (reviewed in Selkoe and 

Toonen 2006).  In our study, however, heterozygote deficit (i.e. positive significant FIS or excess 

in homozygotes) could be caused either by null alleles or Wahlund effect. This is because 

stuttering, which is most often detected in microsatellite loci that contain di–nucleotide repeat 

motifs, was rare or completely eliminated from our study because individuals that produced 

ambiguous peaks were re–amplified and scored more than once, using controls. In addition, 

alleles were consistently scored in established bins and edited manually prior to verification by 

an independent researcher, thus eliminating the inclusion of wrongly scored alleles in our 

analysis.  

 Inbreeding, which is expected to affect all neutral loci, is also unlikely to explain our data 

since all samples originated from the wild, and the mtDNA results indicate an extreme high level 

of haplotypic diversity (i.e. indirectly suggesting the absence of inbreeding). Selection is also 

unlikely to explain the present findings, because the microsatellite loci analysed (with di–

nucleotide repeat units) occurred in the non–coding region of the nuclear genome (Selkoe and 

Toonen 2006). Heterozygosity at neutral loci can be extensively reduced through genetic hitch 

hiking when loci are linked to selected regions of the genome (Maynard–Smith and Haigh 1974; 

Kim and Stephan 2000) – no signature for this was detected because no two loci were linked.  

 The presence of null alleles cannot be completely excluded from our study because they 

have previously been reported in many invertebrates species (Pan et al. 2004; Gruenthal and 
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Burton 2008; You et al. 2008), and were also suggested by MICROCHECKER in the present 

analysis. However, if the presence of null alleles was indeed driving ―non equilibrium‖, it would 

be unique to this study. For instance, null alleles arise if the conserved microsatellite flanking 

region from where priming was expected to occur inadvertently mutates, the PCR condition is 

not fully optimised to allow amplification of all alleles present in a locus. In our case it is 

unlikely that null alleles caused the heterozygote deficit, since the deficit occurred across all six 

loci and at 24 out of 30 locus/locality cases.  

 The Wahlund effect (the occurrence of individuals in a single sampling unit that 

originated from genetically distinct populations, but were brought together erroneously during 

sampling) may be a plausible reason for present deviations from HWE expectation, however 

there was no genetic differentiation among the five geographical localities from where samples 

were obtained (see Ni et al. 2011; You et al. 2008). Alternatively, the Wahlund effect may have 

been caused by inadvertent sampling of individuals occurring in similar localities, but belong to 

different age groups (cohorts) thus forming a temporal Wahlund effect (Selkoe and Toonen 

2006). This phenomenon can occur in the complete absence of genetic differentiation and has 

been observed in larval cod Gadus morhua (Ruzzante et al. 1996) and flat fish Pleuronectes 

platessa (Hoarau et al. 2002). Penaeid prawns are highly fecund, iteroparous and characterised 

by several broods per year (Rao 1968; Jayawardane et al. 2002). These life history characteristics 

coupled with ocean currents might facilitate dispersal among localities and the occurrence of 

different cohorts in the same localities, thus leading to temporal Wahlund effect. It is noteworthy 

that the Wahlund effect is expected to affect all microsatellite loci (reviewed in Selkoe and 

Toonen 2006) which is the case we observed in our study.  
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4.2  Dispersal and recruitment patterns in the Malindi–Ungwana Bay  

A complete lack of genetic differentiation in the MUB, as shown for the three penaeids in the 

present study, was also observed in parrot fish Scarus ghobban (Visram et al. 2010), and two 

mangrove crab species; Neosarmatium meinerti (Ragionieri et al. 2010) and Perisesarma 

guttatum (Silva et al. 2010). These six species all rely on larval dispersal processes driven by 

water movements, and the lack of genetic structure therefore suggests the absence of clear 

barriers to gene flow in the MUB region of Kenyan marine waters. It therefore appears that 

pelagic larvae of several taxa, including fish and crustaceans, are mixed throughout the MUB 

region, where water movements are facilitated by river outflow, tidal exchange, and monsoonal 

winds coupled with ocean currents (see Chapter 1). Furthermore, it appears that differences in 

distribution ranges and habitat preferences in the MUB among the three penaeids (Chapter 1), 

and among several other taxa, do not influence the genetic differentiation patterns at the local 

scale that was studied here.  

 The absence of genetic differentiation observed for the three prawn species in MUB, 

coupled to the distribution pattern of juveniles and adult haplotypes (see Fig. 3 & 4) strongly 

suggest local recruitment patterns. Nevertheless, the MUB populations may also be receiving 

larvae from more distant sources along the East African coast, such as Tanzania, Mozambique or 

South Africa.  

 The alongshore currents and absence of clear physical barriers to geneflow along the East 

African coast may facilitate long distance dispersal of pelagic larvae, and therefore some prawns 

in the MUB might have originated from distant sources. This is supported by the genetic 

panmixia of F. indicus along the East African coast (Querci 2003), as well as the genetically 
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diverged haplotypes (i.e. unconnected haplotypes; Fig 3 & 4) in the present study. Even though 

the occurrence of unconnected haplotypes to the main network may signal under–sampling 

(inadvertent failure to sample intermediate haplotypes; Chen et al. 2010) or sympatric speciation 

(Barluenga et al. 2006), it is more likely an indication of some recruitment from distant sources. 

This hypothesis is supported by previous studies on marine crustaceans that have shown 

extensive regional geneflow along the East African coast, but disjunct from populations 

surrounding island states such as Madagascar, Seychelles and Mauritius (Duda and Palumbi 

1999; You et al. 2008; Ragionieri et al. 2010).  

  

4.3 Management of prawn fisheries in the MUB region 

4.3.1 Local management recommendations 

 

Each of the three prawn species studied exhibited single genetically panmictic populations in the 

MUB region. Consequently, the traditional and recent demarcations of the MUB to form 

artisanal (< 3nm) and commercial (3< nm) fisheries is not supported by molecular data, and both 

fisheries target the same stocks with a single gene pool per species. The present study therefore 

shows that indicators other than genetically separate stocks need to be developed to support 

fisheries management strategies, and particularly the division of fishing grounds among artisanal 

and commercial fishing sectors. These may more appropriately be based on factors such as 

prawn distribution and abundance patterns, recruitment trends, and socio–economic criteria. 
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 The present study showed that nearly all prawn recruits into the MUB originate from the 

nearby estuaries. It is therefore important that estuaries be recognized as nurseries that support 

artisanal and commercial prawn fisheries, and that they are conserved and managed to maintain 

prawn nursery habitats. The destruction of nursery habitats through discharge of untreated wastes 

or chemicals, clearance of mangrove habitats for human settlements or commerce (e.g. ports and 

harbour constructions), and upstream building activities such as dams, that may reduce river 

discharge and therefore alter juvenile recruitment to offshore habitats, need to be identified and 

mitigated.  Failure to do so may eventually collapse prawn fisheries in MUB, as was illustrated 

for the shallow-water prawn fishery on the Tugela Banks off eastern South Africa (Turpie and 

Lamberth 2010). The latter fishery also depended on P. monodon, F. indicus and M. monoceros.  

 A high genetic diversity of prawns in the MUB implies that they are more likely to be 

able to adapt to human and/or climatic induced pressures. However, management of these 

fisheries need to conserve and protect this diversity from overfishing exploitation, because these 

prawn stocks support numerous anthropogenic needs in the region.  

4.3.2 Regional management issues 

The three penaeid species addressed in the present study are the mainstay of the artisanal and 

commercial trawl fisheries in the MUB region of Kenya, and are also caught as primary target 

species in similar fisheries in several other countries of the SWIO (Tanzania, Mozambique, 

South Africa, Madagascar) (van der Elst et al. 2009). To date, prawn fisheries in the SWIO are 

managed individually by countries in which they occur, and consequently a variety of 

management policies and methods has developed in the region (see FAO 2006).   
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It is likely that the genetic panmixia observed in prawn populations in the MUB extends 

further along the East African coast, because of the effects of alongshore current regimes on 

drifting larvae. Indeed, previous studies on P. monodon have indicated that East African coastal 

populations differ genetically from those occurring along the west coast of Madagascar (Duda 

and Palumbi 1999; You et al. 2008). Furthermore, studies on mangrove crabs Neosarmatium 

meinerti and Perisesarma guttatum have also indicated a lack of genetic differentiation along the 

East African coast, but differentiated crabs from these areas from those at SWIO island states 

(Ragionieri et al. 2010; Silver et al. 2010). The present study can therefore be extended to 

include populations from Tanzania, Mozambique, South Africa and Madagascar, to obtain 

genetic population structure of the dominant shallow-water penaeid prawns of the SWIO region. 

Such a study would contribute to the development of regional management strategies for 

shallow-water prawn fisheries in the SWIO region.   
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CHAPTER 5 

General conclusions  

This study presents the first finer scale comparative population genetic analyses of closed 

thelycum species P. monodon, F. indicus and M. monoceros within the range of their natural 

distribution. Further, the study increases the number of genetic population examinations in the 

Kenyan coastal waters conducted for prawn species (i.e. P. monodon from one [You et al. 2008] 

to two), but presents the first genetic analyses of F. indicus and M. monoceros, not only in the 

Kenyan waters but also throughout their range of distributions, when using mtDNA control 

region sequences data.  

 The use of two DNA markers with different evolutionary histories (i.e. mitochondrial and 

nuclear microsatellite DNA) is usually a more robust approach in genetic studies (see section 1.6 

and Karl et al. 2012). The lack of spatial genetic differentiation among the three species of 

prawns in the MUB compares well with results from studies on other taxa (fish, crabs), all of 

which found single genetic populations. Contributing factors are likely to include dispersive 

planktonic larvae, monsoonal winds, ocean tides and currents, and the complete absence of 

physical or environmental barriers to dispersal in the MUB.  

 Recruitment into the bay is dominated by larvae/juveniles that come from local/nearby 

estuarine nursery areas. However, recruitment from distant origins (especially along the 

mainland of the east African coast) cannot completed be precluded from this study (discussed in 

section 4.2).  
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 The present study needs to be expanded regionally, to include samples from other SWIO  

countries (i.e. Tanzania, Mozambique, South Africa and Madagascar), to investigate the extent to 

which ocean current systems in the SWIO contribute to larval dispersal patterns, and whether 

isolation by distance theory can be applied to prawn populations along the East African 

coastline. From a fisheries management perspective, a regional extension of this study will likely 

inform on whether prawn stocks are shared among neighbouring countries, or regionally, thus 

opening the door for regional fisheries management strategies.   
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Appendix 1 

Table 7.  Raw genotypic data obtained from six polymorphic nuclear microsatellite loci for P. 

monodon  

Loci PM25 PM27 PM580 PM3854 PM3945 PM4018 

Sample A B A B A B A B A B A B 

KIP02 209 221 145 145 318 326 210 220 312 312 254 254 

KIP03 223 231 131 157 328 328 236 236 310 310 258 258 

KIP04 219 227 147 163 316 324 232 250 298 298 248 260 

KIP05 227 227 135 135 324 330 228 256 288 332 258 258 

KIP06 203 223 131 149 328 328 222 236 298 298 258 258 

KIP07 223 231 149 171 314 330 234 234 256 308 248 258 

KIP09 205 233 133 145 284 326 236 250 306 306 248 260 

KIP10 207 217 149 159 314 330 218 234 302 302 260 260 

KIP12 219 231 161 161 330 330 224 254 270 302 258 258 

KIP13 211 217 151 151 288 320 226 246 304 304 260 260 

KIP14 205 213 147 147 320 330 214 234 260 302 248 260 

KIP15 215 215 133 165 298 322 208 248 260 316 258 258 

KIP17 219 231 137 151 300 318 222 244 264 318 260 260 

KIP18 205 213 137 147 320 320 224 224 308 308 258 262 

KIP19 209 229 145 165 296 332 236 268 254 310 258 258 

KIP20 219 227 131 169 320 328 232 244 306 318 260 260 

KIP21 219 219 141 149 324 324 240 248 298 308 250 258 

KIP22 209 223 143 151 308 308 216 272 294 308 260 260 

KIP25 201 221 149 149 318 328 220 230 280 280 262 264 

KIP27 217 233 139 151 320 326 228 228 302 302 260 260 

KIP28 225 231 147 157 330 330 242 242 308 308 250 262 

 

NGO01 223 233 135 143 318 324 226 242 306 306 250 260 
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NGO02 223 223 153 161 332 332 216 224 286 312 248 258 

NGO03 213 223 139 151 326 336 230 236 270 270 250 258 

NGO04 221 221 149 161 292 326 234 240 310 310 258 260 

NGO05 203 203 145 149 304 332 256 256 302 302 258 258 

NGO08 209 209 133 147 284 312 224 232 260 312 248 258 

NGO09 215 221 133 157 320 326 218 256 316 316 258 260 

NGO10 225 225 137 159 334 334 220 238 294 316 258 260 

NGO12 201 227 149 165 316 334 236 244 304 310 258 258 

NGO13 201 223 147 155 324 324 242 242 272 290 258 260 

NGO15 217 227 149 149 318 324 222 236 298 304 248 248 

NGO16 223 223 147 147 330 330 210 244 258 272 248 248 

NGO19 219 227 147 147 328 328 234 234 298 316 248 260 

NGO20 223 223 153 157 314 324 226 234 286 308 248 258 

NGO21 209 223 127 151 320 320 234 246 260 302 260 260 

NGO24 199 219 147 157 304 326 216 234 260 288 258 260 

NGO25 207 221 131 159 296 320 256 276 298 298 248 258 

NGO26 209 225 149 159 294 326 224 236 302 302 258 258 

NGO27 203 223 141 169 320 326 230 240 290 308 248 258 

NGO29 219 225 139 161 316 326 242 242 298 312 258 258 

 

MDS01 205 217 135 165 326 336 210 210 298 312 260 260 

MDS02 213 219 147 157 330 330 216 228 298 298 258 258 

MDS03 213 229 141 171 314 322 212 238 308 308 260 260 

MDS04 205 219 145 145 308 332 240 240 256 302 258 258 

MDS05 219 219 145 153 326 332 224 230 260 308 258 258 

MDS06 209 219 141 149 314 330 226 250 266 318 258 258 

MDS07 221 221 141 149 320 320 206 228 312 312 260 260 

MDS08 207 213 137 147 326 326 234 256 298 298 260 260 

MDS09 207 223 131 175 312 328 218 236 290 290 248 260 

MDS11 203 227 151 151 312 330 220 238 260 306 258 258 

MDS12 209 209 147 165 332 332 232 242 322 322 258 260 

MDS13 223 223 149 149 328 328 246 262 306 306 256 258 
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MDS14 209 223 131 157 332 332 226 244 298 310 260 260 

MDS15 217 225 137 147 320 332 234 240 308 308 248 258 

MDS16 211 223 139 151 294 336 228 240 260 318 248 258 

MDS17 225 225 153 171 312 318 208 240 302 302 258 258 

MDS18 229 229 149 171 296 326 210 210 298 298 260 260 

MDS19 209 217 139 145 320 328 224 252 310 318 260 260 

MDS20 205 225 137 141 308 308 214 236 262 290 258 258 

MDS21 209 209 135 149 312 322 226 226 262 304 250 258 

MDS25 201 223 157 161 324 324 236 236 262 304 248 266 

MDS27 219 219 149 171 316 324 216 216 262 298 260 260 

 

OFK01 203 221 151 151 318 330 212 258 294 316 258 258 

OFK02 213 223 151 151 306 324 222 236 274 322 260 260 

OFK03 203 225 151 157 302 328 204 250 302 318 260 260 

OFK04 217 217 131 157 316 322 236 250 302 318 248 258 

OFK05 209 233 143 161 330 330 240 256 258 258 248 260 

OFK06 205 235 141 147 330 330 224 224 294 306 258 258 

OFK07 217 231 127 157 324 330 222 254 260 260 260 260 

OFK09 219 219 135 169 318 334 214 236 298 298 258 258 

OFK10 217 231 139 159 320 330 224 238 298 314 250 256 

OFK11 217 227 143 171 284 310 222 282 278 312 258 260 

OFK12 217 225 135 147 328 328 224 224 304 304 246 260 

OFK13 217 225 149 159 324 332 244 270 262 312 258 258 

OFK14 219 219 135 157 332 332 234 246 260 260 260 260 

OFK16 215 215 133 157 326 326 222 240 310 322 250 260 

OFK19 211 219 135 141 320 330 232 232 288 288 260 260 

OFK23 209 217 145 145 286 320 214 214 270 294 260 260 

OFK25 203 203 127 169 334 334 238 262 262 306 250 260 

OFK26 225 231 153 163 316 330 222 242 294 298 260 260 

OFK27 227 227 149 173 310 326 220 220 260 294 258 258 

OFK28 209 229 145 155 306 334 220 248 312 324 260 260 
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OFS01 217 229 147 165 332 332 222 230 304 316 256 258 

OFS02 225 225 139 149 312 324 218 232 306 314 258 260 

OFS03 205 225 147 163 318 328 226 226 304 304 248 248 

OFS05 205 225 145 153 324 324 226 250 308 316 260 260 

OFS06 209 223 147 153 290 326 218 232 254 232 258 258 

OFS07 227 235 147 159 330 330 226 230 266 312 258 258 

OFS08 217 217 147 163 282 328 226 232 288 306 258 260 

OFS09 225 225 145 155 326 326 210 250 262 310 258 258 

OFS10 217 239 151 157 328 328 228 250 268 298 248 258 

OFS12 203 211 131 151 326 334 228 242 260 312 258 260 

OFS13 217 229 141 147 328 334 216 228 260 306 250 260 

OFS15 203 221 151 151 326 326 210 224 316 316 258 258 

OFS16 213 223 149 153 328 328 210 230 304 314 258 260 

OFS17 203 225 151 157 304 336 234 234 288 310 258 258 

OFS18 209 209 129 157 282 330 232 242 314 314 258 260 

OFS19 209 233 143 161 316 330 228 228 306 306 258 258 

OFS20 205 235 143 147 318 332 232 232 254 308 248 260 

OFS21 217 231 127 157 328 328 224 232 282 298 250 262 

OFS22 219 219 135 169 330 344 218 230 282 310 260 260 

OFS23 207 227 139 149 310 332 226 226 290 308 256 258 

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



74 

 

 ESN16Mm

 ESK03Mm

 ESN07Mm

 OFN02Mm

 ESN26Mm

 OFN18Mm

 ESN18Mm

 ESK22Mm

 ESK14Mm

 OFN11Mm

 OFN23Mm

 ESK26Mm

 OFN06Mm

 ESN24Mm

 ESN22Mm

 OFN26Mm

 MDS07Mm

 ESN19Mm

 ESN28Mm

 ESN05Mm

 OFN30Mm

 ESN20Mm

 ESK18Mm

 ESK13Mm

 ESK12Mm

 OFN24Mm

 OFN10Mm

 OFK27Mm

 ESK04Mm

 ESN14Mm

 ESK30Mm

 MDS13Mm

 ESK17Mm

 ESN15Mm

 OFN16Mm

 ESK29Mm

 ESK08Mm

 OFN08Mm

 ESN09Mm

 MDS17Mm

 ESK24Mm

 OFK15Mm

 ESN03Mm

 OFK25Mm

 MDS11Mm

 ESK11Mm

 OFN01Mm

 ESK21Mm

 ESK07Mm

 OFN27Mm

 OFN09Mm

 MDS03Mm

 ESK23Mm

 ESN23Mm

 OFK08Mm

 OFN03Mm

 OFN14Mm

 OFK30Mm

 ESK28Mm

 MDS19Mm

 ESK25Mm

 MDS31Mm

 ESK27Mm

 OFK10Mm

 OFN21Mm

 ESK02Mm

 OFK17Mm

 ESK06Mm

 OFK18Mm

 OFK06Mm

 OFK11Mm

 MDS18Mm

 MDS06Mm

 MDS20Mm

 ESN17Mm

 MDS14Mm

 ESN10Mm

 MDS10Mm

 ESN27Mm

 ESN01Mm

 MDS09Mm

 OFK23Mm

 ESN30Mm

 ESN06Mm

 ESN13Mm

 ESN25Mm

 ESN04Mm

 ESN11Mm

 Hap 1Pm

0.05   

C
la

d
e 

A
 

M
. 

m
o
n

o
ce

ro
s 

C
la

d
e 

B
 

C
la

d
e 

C
 

M
. 

st
eb

b
in

g
i 

Stellenbosch University  http://scholar.sun.ac.za



75 

 

Fig. 6. Neighbour joining tree reconstructed from the mtCR sequences, showing M. monoceros 

and M. stebbingi clades, originating from the MUB. The three clades were confirmed using 

morphological examinations of sub–adults or adults specimens.   
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