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Abstract
Water plays a significant role in every sector of the ecosystem. The fluctuation of the water levels in lakes is influenced 
by natural and man-made factors within the water catchment. Lake Baringo, which has no visible outlet, has been rising 
drastically, causing panic among native communities and businesses on the shores of the lake. Using GIS and Remote 
Sensing, this study intends to analyze the changes in water lakes using the Automatic water extraction index (AWEI), 
determine the causes of the fluctuation using Land use Land cover, land surface temperature, soil erosion, and siltation 
in the lake basin and the lake respectively, precipitation, and later predict of the water level for the year 2030 using the 
MOLUSCE tool. The tool utilizes an artificial neural network and cellular automata to analyze land use and land cover 
conveniently. It was found that the lake’s water level has been increasing drastically over the years, and the leading causes 
of the fluctuations were increased rainfall and human activities within the water basin. There are visible increased human 
activities within the water basin, such as agriculture, deforestation, settlement, and urbanization. It was also found that 
there will be a further increase in water level in 2030. With all the above results, it is recommended that better policies 
be made to conserve the water basin effectively, and a plan should be drawn to re-delineate the new riparian buffer.
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1 Introduction

Lakes are critical in the world’s biodiversity as they are habitats, resources for consumption, industrialization, and 
recreation [19]. The fluctuation in lake water levels has affected the community in a big way, either directly or indi-
rectly, from the destruction of property and agriculture when it floods; the road becomes inaccessible to people, and 
animals die due to drowning [26]. There is an urgent need for greater comprehension of the underlying patterns of 
natural variability of water resources and evaluation of their implications for water resource management and con-
servation due to the ever-increasing human demand for water and the growing unpredictability of the climate [39].

Lake Baringo is one of the most important lakes in the Rift Valley of Africa [52], as it is a freshwater lake in the Great 
Rift Valley, providing water for consumption, fishing, industries, and recreation. It is also among northern Kenyan Rift 
Valley lakes [29]. As shown in Fig. 1, the Lake has a surface area of 130  km2 and an elevation of 970 m. Its inlets are 
the rivers Ol Arabel, Perkerra, and Molo, but it has no visible outlet as it is assumed to have an underground outlet 
through the faults of the Rift Valley [49].

Lake variability has been studied from time to time all over the world as it has a very significant impact on water 
resources management [18, 32, 34, 45–47]. Mark B. Abbott & Lesleigh Anderson [1] show that the causes of such 
fluctuations include climatic change [14, 23, 29, 35, 50, 77], activities within the tectonic plates, erosion at the out-
let or inlet [38, 55, 64], and human activity [5, 7, 10, 17, 41]. Research in western Lake Victoria by Brown [13] shows 
that land cover, topography, and climate significantly influence the region’s streamflow and wetland extents. These 
fluctuations significantly impact the ecosystem [26, 54], community, and biodiversity [7, 20, 33]. The effects that the 
water basin feels from the lake fluctuations can be mitigated by effective planning that can only be achieved by 
forecasting the probable water levels for the future [40]. Many models have been used in predicting water levels not 
limited to machine learning, arithmetic, spatial analysis, and GRU model [16, 30]. Lake Baringo, being that it lacks a 
physical outlet, is presumed to have an underground water outlet as it’s a freshwater lake [49]; several research has 
been done to show the relationship between groundwater and lake water [36, 76, 78].

From the above research, it is duly noted that there is a lack of spatial research in the region due to a lack of ground 
data, limited comprehensive models that integrate various factors that influence water level fluctuations, and the 
need to localize the prediction research as many research has been done everywhere except for Lake Baringo. Using 
satellite imagery, the study intends to check the effects of human activities in the water basin using land use land 
cover, the intensity of soil erosion, the impact of rainfall, and land surface temperature on the lake. The water level 
and the factors that influence the water level are correlated, and using the MOLUSCE tool, a prediction of the future 
water level is obtained.

The study aims to extract the water levels, characterize the probable factors that led to the changes in Lake Bar-
ingo, and predict the possible water level for the year 2030. The specific objectives of the study are to determine the 
Lake’s water fluctuations for the years 1990, 2000, 2010, and 2020 using AWEI and DAHITI tools, to characterize the 
probable factors affecting changes in water level in Lake Baringo and to predict water level in the year 2030 later 
using MOLUSCE tool.

Studying the fluctuations of water levels and their causes is very important as it leads to efficient resource manage-
ment and encourages the development of conservation measures. Additionally, predicting water level fluctuations is 
crucial for sustainable water supply planning, flood control, water resource management, shoreline maintenance, and 
the overall sustainability of lakes. The research’s data and output will help researchers develop a program automati-
cally delineating riparian buffers as they will be far above the current highest watermark. It will also be a stepping 
stone for those who study water quality and its effects on the ecosystem, formulating effective plans for conserving 
and managing water resources.
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Fig. 1  Lake Baringo Water Basin showing the DEM, river, Lake Baringo, and the ESRI topographical map as the Base Map
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2  Methodology

2.1  Methods

A multidisciplinary approach and integration of diverse data sources are used to model water level trends and 
characterize probable causes impacting water levels in Lake Baringo, Kenya. The main steps in doing this analysis 
are data gathering and assembling historical Lake Baringo water level information. A lengthy time series dataset is 
ideal for capturing seasonal and long-term patterns. The data collected include satellite images from Landsat [4], 
meteorological data [26], soil data [22], and water level data from the DAHITI website [60]. Preparation and quality 
assurance were done to ensure the obtained data’s correctness and consistency, as well as to clean and pre-process it. 
Align all datasets to a constant period, then remove any outliers or missing values. This process is essential for accurate 
analysis. The data, especially the Landsat data, were pre-processed by radiometric and geometric corrections. The 
mosaic, layer stacking, co-registration, and resampling were done to improve the output of the processed data [15].

The lake’s water level and surface area were determined using AWEI, which was then correlated with the water level 
from the DAHITI website [61]. Using satellite images, land use land cover, rainfall, and land surface temperature maps 
were drawn. In contrast, soil erosion maps were obtained from the RUSLE model, which utilizes land use land cover, 
slope, rainfall, soil, and topographical maps. Finally, the 2030 water level prediction was made using an automatic neutral 
network and cellular automata in the Qgis MOLUSCE tool. Sensitivity analysis of the predicted output is then done for 
accuracy checks.

2.1.1  Data collection

The data used in this study are DEM; the digital elevation maps that were acquired from ALOS PALSAR, metrological 
data; the precipitation and humidity obtained from CHIRPS, and topographical maps from Kenya Survey offices, Landsat 
satellite images from the USGS website, and water level data that was obtained from the DAHITI website, as shown in 
Table 1. The satellite images obtained were for between January and March since these months are the dry months and 
there are fewer clouds, which helped with the data quality.

2.1.2  Software

The data were clipped, cleaned, merged, overlayed, and processed using ArcGIS, Quantum GIS, ENVI, ERDAS Imagine, 
Google Earth, R studio, Geodata, Microsoft Excel, and Global Mapper.

2.2  Data processing and analysis

Using Landsat data from the USGS for 1990, 2000, 2010, and 2020, the lake water surface area was extracted using the 
automatic water extraction index (AWEI) since it gives better accuracy than other water indices [3, 42]. This tool improves 
the accuracy of extracting water bodies in areas including shadows and dark surfaces compared to other methods that fail 

Table 1  Characteristics of satellite imagery used for the study

Data Resolution Sensor Year Source Date acquired Date analysed

DEM 12.5 m SAR ALOS PALSAR 16.03.2022 16.03.2022
LANDSAT 4 30 m TM 1990 USGS 6.04.2022 26.05.2022
LANDSAT 5 30 m TM 2010 USGS 6.04.2022 27.05.2022
LANDSAT 7 30 m ETM + 2000 USGS 6.04.2022 28.05.2022
LANDSAT 8 30 m OLI 2020 USGS 6.04.2022 29.05.2022
PRECIPITATION 0.050 1990–2020 CHIRPS 8.9.2022 1.10.2022
SOIL DATA 5*5 arc minutes FAO 21.10.2022 21.10.2022
WATER LEVEL  < 10 m Sentinel-3A, Jason-2& 

ENVISAT (MERIS)
2008–2020 DAHITI 13.12.2022 13.12.2022
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to classify water correctly [47]. The formula for this index is shown in Eq. 1. Still, these need to be done after the satellite 
images have been pre-processed, radiometric, geometric, and atmospheric corrections done, layer stacking, mosaicking, 
co-registration, and resampling have been done [15].

where the SWIR is Short-wave infrared, and the NIR is Near-infrared [42].
The output of AWEI is the lake water surface area, while the water level was obtained from the Database for 

Hydrological Time Series of Inland Waters (DAHITI) [60]. The ratio was calculated using the lake water surface area and 
the water level from DAHITI, giving a water level graph.

The DEM data from ALOS PALSAR was used to delineate the water basin [37]; this was done by processing the flow 
direction and establishing whether there were sinks. If there is no sink, a depression-less DEM is created; if there are 
sinks, a fill needs to be done. From the depression-less DEM, flow accumulation was made, a flow length was drawn, the 
snap pour points were drawn, and the water sub-basins were created with all these. The merging of sub-basins forms 
the Lake’s water basin [21].

After the water basin has been delineated, the HRUs are drawn, and the SWAT model runs, getting the 
evapotranspiration maps and the water balance equation analyzed [9]. The annual rainfall data collected from the CHRPS 
database was used to draw maps and graphs to show rainfall variation over the years. These graphs are essential when 
comparing precipitation and water fluctuation in Lake Baringo.

The revised universal soil loss equation (RUSLE) model was used to calculate the amount of erosion within the Lake 
Baringo basin [12]. The above model was to determine the siltation level caused by soil erosion [68]. The formula in Eq. 2 
is used to calculate it:

where the C-factor is the crop management factor, it was used to reflect the effects of crops, soil biomass, construction, 
and other activities on the basin. The LS factor is the slope length factor, which was used to calculate the erosion that 
occurs due to the slope of the Land. When the slope is steep, it is presumed to have a higher erosion rate than flat ground. 
The P-factor is the practice support factor used to analyze the effects of agricultural practices, such as strip cropping 
and terracing. With this, it can be differentiated between agricultural lands and rangelands. K-factor is the soil erodibility 
factor due to surface runoff; therefore, it only affects the topsoil. While the R-factor estimates erosion caused by rainfall, 
it is derived from rainfall data, usually in point data; it is converted to a polygon using ArcMap with the annual rainfall as 
the value. The amount of soil loss is to be identified for the years 1990, 2000, 2010, and 2020.

The land surface temperature (LST) of the water basin for the years of study was extracted from the processed Landsat 
data [44]. The atmospheric reflectance, NDVI, brightness temperature, and land surface emissivity were obtained using 
Landsat data from the split window method [56], as in Eq. 3.

where; TS Is Surface Temperature in degrees Celsius, BT
10

 is Brightness Temperature Value in degrees Celsius at band ten 
and BT

11
 is Brightness Temperature Value in degrees Celsius at band 11.

Land use land cover (LULC) is to be obtained from the Landsat data for 1990, 2000, 2010, and 2020. Using a level I 
classification system, water, urban, agricultural lands, bare Land, range lands, and forests are extracted from the Landsat 
satellite images in Erdas Imagine using supervised classification [38]. The supervised classification uses a maximum 
likelihood classifier after the satellite images from Landsat have been pre-processed, radiometric, geometric, and 
atmospheric corrections are done, and layer staking and mosaic are done. After the LULC analysis, an accuracy assessment 
and post-classification were performed to check the accuracy of the LULC [77].

Pearson correlation analysis was done to determine the relationship between the lake’s water level with respect to the 
Land Use Land Cover (LULC), the Land Surface Temperature (LST), soil erosion, and rainfall. The output of the correlations 
is the graphs with the above variables as the primary vertical, the water level as the secondary vertical, and the years of 
study as the primary horizontal.

The water level was modelled using an artificial neural network [30] and cellular automata to train the data using the 
MOLUSCE tool available in the QGIS open-source application. Based on the LULC data for 2000 and 2010, explanatory 
variables, and transition matrices, the LULC for 2020 was projected. The MOLUSCE plugin offers a kappa validation 
technique and comparison of actual and forecasted LULC images to validate the model and prediction accuracy. In the 

(1)AWEI = 4 ∗ (green − SWIR2) − (0.25 ∗ NIR + 2.75 ∗ SWIR1)

(2)E = C factor ∗ LS factor ∗ P factor ∗ K factor ∗ R factor

(3)TS = BT
10
+
(

2.946 ∗
(

BT
10
− BT

11

))

− 0.038
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ANN learning process, 1000 iterations, a neighborhood value of 1 1 pixels, a learning rate of 0.001, 10 hidden layers, and 
0.05 momentum were chosen to project the LULC for 2020. After obtaining satisfactory results from the model validation, 
the LULC data from 2010 to 2020 was employed to forecast the LULC in 2030.

Sensitivity analysis determines how different values of an independent variable affect a particular dependent variable 
under a given set of assumptions [58]. The MOLUSCE plugin did this to determine if the variables LST, rainfall, elevation, 
and siltation affect the prediction of water levels in the year 2030.

2.3  Limitations

Water level fluctuations in lakes are very dynamic and complex to analyze and forecast correctly, which is why 
different machine learning has been used. This study used artificial neural networks and cellular stomata to predict 
the water level, and no other machine learning model was used to check the model’s accuracy. There was also a 
challenge with the availability of ground data and spatial for the same period as when the analysis was to be done. 
Most of the data were initially recorded in files and books, and the data was not consistently collected, affecting 
the reliability of the available data. Systematic errors and biases in environmental models used to study water-level 
fluctuations can affect the reliability of model parameters and predictions. Due to financial constraints as the project 
was self-funded, tectonic forces, a significant factor assumed to have caused the water level fluctuation due to 
tectonic plates converging, were to be analyzed in this study [10]. Lake Baringo is a special case as it has no visible 
outlets. It is presumed that since it is a freshwater lake, it has underground water outlets, so it is necessary to study 
its outlet and know the relationship between the water level, siltation, and underground water resources in the 
water basin [76, 80].

This process is shown in the Fig. 2;

Fig. 2  Flow Chart Methodology for remote sensing and GIS analysis
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3  Results

3.1  Fluctuation of lake water levels

The research on modelling the water level trends of the lake and analyzing the factors causing the fluctuations was 
successful. The output is displayed as maps, charts, and graphs with clear descriptions. The accuracy assessment 
for the water extraction index showed that the extracted surface area of the Lake was close to a perfect replica of 
the ground data obtained from Google Earth and other high-resolution images. The output of the AWEI gives the 
surface area as shown in Fig. 3, showing that the lateral water extent had been reducing from the year 1990 to the 
year 2003, it started increasing to the year 2014, dropping slightly to 2018, and it made the highest water extent 
mark in the year 2020. There has been a visible instantaneous increase in water lateral extent from 2003 to 2020, 
as confirmed by the lake’s rise in water levels.

A correlation between the water surface area and the data obtained from the Database for Hydrological Time 
Series of Inland Waters (DAHITI) website, the Water Level Time Series (Altimetry), gives the water level as shown in 
Fig. 4. It is demonstrated that the water level was 820 m in 1990, which further decreased to 740 m in 2000. There 
was a drastic further decrease and increase respectively between 2000 and 2004. It is clearly shown that there was 
a further increase in water level in 2014, which again dropped and later increased to 1180 m in 2020.

The 522 m level increase is visible from 2003 to 2020, backed by the data from the water lateral extent difference 
of 88 square kilometres. It is also to be noted that from 1990 to 2023, the lowest water level in Lake Baringo was 
witnessed in the same year, as shown in the lateral water extent of the Lake; Fig. 5.

Fig. 3  Lake Baringo Water Sur-
face Area from the year 1990 
to 2020

Fig. 4  Lake Baringo Water 
Level from the year 1990 to 
2020
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3.2  Land use land cover

Water levels have risen over time, with the year 2020 significantly having the highest increase ever seen, with a 
65.58% increase from 1990. Forest cover has decreased by 48.43% in 2020 compared to 1990. Agricultural land is 
seen to increase continuously but dropped in 2010. 2020 marked the highest increase in agricultural activities, with 
a 12.41% increase compared to 1990. Between 1990 and 2010, the size of bare land rose significantly, but between 

Fig. 5  Lake Baringo Lateral Water Extent for 1990, 2000, 2010, and 2020
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2010 and 2020, it decreased by 51.5%. After declining year after year, the rangelands increased in 2010. It can be 
seen through a comparison of the years 1990 and 2020 that there has been a decline of 11.39% between 2020 and 
1990. The visual graphical representation of the land use land cover is clearly shown in Figs. 6 and 7, respectively;

Fig. 6  Land Use Land Cover Maps for the years 1990, 2000, 2010, and 2020
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3.3  Precipitation

Kenya has its maximum rainfall in April and May each year, and the dry months are December to March, but some 
of the years, like 2020, had an averagely high rainfall for the whole year. Light showers or moderate humidity are 
expected for the year’s remaining months. The year’s average rainfall in the water basin is clearly represented in Fig. 8. 
The basin receives different intensities of rainfall continuously around the year. The precipitation across the year is 
represented with the word ppt; hence, the six categories of rainfall with the light showers (ppt1) were represented 
by light blue, the heavy rainfall(ppt6) was represented by the darkest blue color in Fig. 9, it shows that 2020 had the 
highest low and highest high of 1020 mm and 1659 mm, respectively, double the rainfall received in 2000. Rainfall in 
the basin has been different yearly, but it usually reaches 1000 mm. In 1990, the rainfall measured a low of 896 mm 
and a high of 1602 mm; in 2000, it was a high of 929 mm and a low of 484 mm; and in 2010, it had a low rainfall of 
759.13 mm. These rainfall amounts have a direct relationship with the water level.

Precipitation and water level go hand in hand, especially when there is high surface runoff, as Hartmann et al. [27] 
discussed. There was a direct relationship between water level and precipitation, as shown in Fig. 9. The highest water 
level that has ever been witnessed in the Lake Baringo water basin was in the year 2020, when the rainfall measured 
1659 mm, while the least precipitation level was in the year 2000, at an average of 706 mm, which coincidentally 
marked the lowest water level at 774 m. These results show a direct relationship between the water level and the 
precipitation. As the precipitation increases, the water level increases, and vice versa. This correlation between rainfall 
and water level is crucial for understanding the hydrological dynamics of Lake Baringo. It highlights the significance of 
rainfall patterns in maintaining the water balance and overall health of the lake ecosystem. Additionally, monitoring 
and analyzing these trends can aid in predicting future water levels and implementing effective water management 
strategies.

3.4  Soil erosion

The model soil erosion probability zones within the lake basin were generated by overlaying the Land use land cover 
maps, soil maps, slopes, and rainfall maps using the weighted index overlay method. It is clearly shown that the 
erosion level is highest in slopy areas where agriculture is practiced; there is little to no soil loss in rangelands and 
forested regions. Bare Land, on the other hand, had negligible soil erosion, which is alarming, and more research 
needs to be done to check it. It should also be noted that soil loss is more concentrated in the river channels, noting 
that most erosion within the lake basin is caused by water rather than by wind.

Figure 10 shows the relationship between water level and soil erosion; since soil erosion varies with intensity 
across the water basin, the word rusle1 (rusle)representing the output of the RUSLE model was used to show the 
minimal levels of erosion. In contrast, rusle5 represents the highest intensity of soil erosion, such as excavations 
and landslides. It is shown that there is a direct relationship between the water level and the soil erosion level, as 
the water level was at its highest in 2020 while the soil erosion levels, especially in the agricultural area, were high, 
too. These results suggest that the increase in soil erosion can be attributed to the higher water levels caused by 

Fig. 7  Graph of the correla-
tion between LULC and Water 
Level
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human activities such as deforestation and agricultural practices. These activities contribute to the destabilization 
of the soil, making it more susceptible to erosion when exposed to higher water levels.

There is also a relationship between soil erosion and precipitation. Typically, soil erosion increases with increased 
rainfall due to surface runoff. From Fig. 8, despite the year 1990 having an average rainfall of 1223 mm, the aver-
age soil erosion in the water basin was 7.6 t/y, while in 2000, the precipitation reduced to 694 mm, and there was 
an increase in soil erosion to 26 t/y. In 2010, the rainfall was 1002 mm while the soil erosion was 36 t/y. Finally, 
in 2020, the rainfall was at its highest at 1328 mm, while the soil erosion was at its highest at 54.6 t/y. It is clearly 

Fig. 8  Rainfall Maps for the years 1990, 2000, 2010, and 2020
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shown from the graph in Fig. 11 that the soil has been increasing constantly over the years despite the variability 
of precipitation in the water basin.

The years 1990, 2000, and 2010 had relatively average amounts of soil losses, measuring a high range between 
77 and 102 t/yr, while in the year 2020, soil erosion was at its highest of 140 t/yr, as shown in Fig. 12. These results 
indicate that this is directly proportional to the increased rainfall and human activities within the water basin. Soil 

Fig. 9  Graph of the correla-
tion between Rainfall and 
Water Level
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erosion has increased drastically since 1990, as shown in the Fig. 10. However, despite 2000 having the least amount 
of water in the Lake and the precipitation level being low, there was a higher erosion than in 1990, which is said to 
be due to human activities like deforestation, agricultural practices, and settlements.

Fig. 12  Soil Erosion Maps
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3.5  Land surface temperature

The radiative skin temperature of the Land that results from solar radiation is known as the land surface temperature 
(LST). The land surface temperature is where the incoming solar energy interacts with and warms the ground or 
the surface of the canopy in vegetated regions and is where LST detects the emission of thermal radiation. The 
temperatures of bare soil and plants combine to form LST. Due to this characteristic, LST is sensitive to changing 
surface conditions and a reliable indication of energy partitioning at the Land surface-atmosphere interface.

Land surface temperature is a continuous variable that is not the same throughout the lake basin; with this in mind, 
it seemed fit to have variable extends of the LST in a year. As shown in Fig. 13, in 1990, the water basin experienced the 
lowest LST value of − 5 k represented by lst1 in the graph, while the highest LST, represented by lst6, was 45.8 k. With the 
above explanations, LST is a measure of global warming, if there is any. As shown in Fig. 14, the land surface temperature 
in 2020 was the coldest, considering a lot of precipitation. But using the other years, like 2000, where the rainfall was at 
its lowest, it is funny enough that there was a low of − 6 k and a high of 39 k. The lake water level was also at its lowest, 
making the relationship between LST and water level ambiguous.

The correlation between land surface temperature and water levels is now direct, as in the year 2000, the water levels 
were at their overall lowest, and the land surface temperature was also at its lowest. It should also be considered that 
when the water level was at its highest in 2020, the LST registered a low of − 9 k compared to − 6 k in 2000, as shown in 
Fig. 13.

Despite having the lowest range of low LST, the largest region in 2020 experienced a low LST. Figures 6 and 14 show 
that most forested areas, agricultural areas, and water bodies experienced a lower LST, while the rangelands and bare 
Land experienced a high of 47 k. Mwaka et al.’s [44] study discovered a significant inverse relationship between LST and 
lake water levels in Lake Baringo. Their research using remote sensing data and statistical analysis showed that lake 
water levels tend to decline when land surface temperatures rise. This connection is explained by the possibility that 
increasing LST may result in higher evaporation rates, reducing the Lake’s water level. These results emphasize the need 
for conservation efforts and methods to lessen the effects of climate change on this essential water resource and are 
significant. The results indicate that the overall temperature fluctuations varied significantly across different regions and 
land types. It is crucial to analyze the factors contributing to these variations, such as vegetation cover, land use patterns, 
and local climate conditions, to understand the complex dynamics of land surface temperature changes.

3.6  Prediction model of the water level at 2030

Using the MOLUSCE plugin, the predicted water surface area is found after the initial input of the model used is LULC for 
1990, with the final input for the data training in 2010. The parameters used for the predictions are DEM, LST, precipitation, 
and soil loss map of 2020. A correlation analysis using the Pearson coefficient gives the class statistics and transition 
matrix.

Fig. 13  Graph of the correla-
tion between LST and Water 
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The data that was used for training were randomly selected from 10000 samples. They were trained using an artificial 
neural network (multi-layer perceptron), with the following parameters: neighbourhood 1px, learning rate 0.1, maximum 
iterations 1000, momentum 0.05, and with that, an overall accuracy of − 1.17058, a min validation overall error of 0.97237 
and a current validation Kappa error of 0.45044. Using the cellular automata simulation and the parameter of 2020 as 

Fig. 14  Lake Baringo Basin LST Maps for 1990, 2000, 2010, and 2020
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the calibration, the LULC for 2020 is predicted. The predicted map is then validated in 5 iterations using the classified 
LULC for 2020, creating a validation map that checks persistent classes and produces a Kappa error of 0.8975. Using the 
trained data, the LULC for the year 2030 is predicted, and the water surface area is extracted, as shown in Fig. 15.

The lake water level is then obtained by finding the ratio between the water surface area from 1990 to 2023 and the 
lake water level downloaded from the DAHITI website. The data is then correlated to determine the lake water level for 

Fig. 15  The Lake Water extent for the year 1990 and the Predicted Lake Water Extent for 2030
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2030, as shown in Fig. 16. The output indicates that the water level has been increasing drastically, and the water level 
in 2030 will have increased by 43.74% when the water level 1990 is used as the base.

3.7  Sensitivity analysis

Sensitivity analysis is a critical stage in modelling water levels and hydrological systems. It accomplishes several 
significant tasks. It is first helpful to pinpoint the crucial variables and inputs significantly impacting the model’s 
results. According to Saltelli et al. [58], sensitivity analysis enables modelers to concentrate their efforts and resources 
on the most important variables by quantifying the model’s sensitivity to parameter changes. Examining how changes 
in inputs affect the model’s predictions also helps determine the model’s robustness and reliability. This process is 
crucial to comprehending the model’s constraints and error-proneness. According to Vrugt et al. [67], sensitivity 
analysis can also aid in the calibration and validation of models by directing the adjustment of ambiguous model 
parameters to match observed data better. In conclusion, sensitivity analysis ensures that hydrological models are 
reliable and accurate, offering crucial information for decision-making in the management of water resources and 
environmental planning.

Sensitivity analysis is a technique used to show how some of the parameters in the model change the output of the 
model. This study uses two modelling methods: artificial neural networks (ANNs) and cellular automata (CA) for spa-
tial–temporal forecasting and simulation of land use changes. The two methods adjusted the model’s input parameters 
and tracked how the results changed. The sensitivity analysis of the prediction model was done using the MOLUSCE 
plugin of QGIS, where the prediction was done with all the variables except one, as shown in Fig. 17. It is shown that the 
predicted LULC with Land surface temperature, DEM, and soil erosion without precipitation give almost the same value 
as the rest of the factors without DEM, Soil erosion, and land surface temperature, respectively. Using the predicted LULC, 
the water surface area is extracted and converted into water levels.

4  Discussions

The research results have shown a recent increase in Lake Baringo’s water level from 2003, the highest level being in 2020 
and the lowest in 2003. The increase is due to human activities within the lake basin, such as urbanization, agriculture, and 
deforestation, thereby increasing soil erosion in the water basin. The research also shows a direct relationship between 
water level and rainfall, with an inverse relationship between land surface temperature. The MOLUSCE predicting tool 
shows that the water level will increase even further in 2030.

The water level in the lake decreased from 1990 to 2003, marking it as the lowest it has ever been. There was and still 
is an increase in the water level since the year 2003 and findings are supported by the research that had been done by 
Herrnegger et al. [29], Olago et al. [50], Wainwright et al. [69], and Olaka et al. [51] showing a rise in Lake Baringo’s water 
levels but is in contrast to earlier research by Scholten [59], Hassan et al., and (Gadissa et al., [23] finding that natural 
events resulted in a decline in water levels. This difference could be caused by analysis of several time and data sources. 

Fig. 16  Graph of Water level 
from 1990 to the year 2030
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The results check the theories that were the basis of this research. The study’s objectives were all achieved as the lake 
water level was determined to have increased, the factors that caused the water level to fluctuate were analyzed, and 
finally, the water level for 2030 was predicted to increase by 43.74% using 1990 as the base.

Humans can either be creators or destroyers, and their activities within this lake basin, alongside natural factors like 
rainfall, have been shown to impact the Lake Baringo basin significantly. It is shown that in the basin, urbanization, 
agriculture, and deforestation have been increasing year after year as the water levels rise. Land use land cover has 

Fig. 17  Sensitivity Maps for predicted LULC without precipitation, LST, soil erosion, and Elevation
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a significant impact on the water levels in lakes, as indicated by Abraham and Nadew [2]; their study found that the 
reduction of forested areas and the expansion of agriculture and built-up areas have had a significant impact on the 
water balance of Katar and Meki River Basins in Ethiopia. When Versace [66] examined the Glenelg Hopkins landscape, 
he determined that land cover influences water quality and quantity. Mutungwa [43] found that the water level in Lake 
Naivasha has experienced significant variations in water levels over the past century, and this is attributed to both climate 
variations and human activities at the lake’s shores.

The study shows that climatic changes greatly affect water levels as the increase in rainfall and the decrease in land 
surface temperature have led to increased water levels in Lake Baringo. The 522 m level increase is visible from 2003 to 
2020, backed by the data obtained from the water lateral extent difference of 88 square kilometres. It is also to be noted 
that from 1990 to 2023, the lowest water level in Lake Baringo was witnessed in the same year when rainfall was at its 
lowest. The study done by Herrnegger et al. [29] finds that the increases in lake areas are significant, ranging from 21% for 
Lake Naivasha to an extraordinary 123% for Lake Solai, and attributes these changes to an increase in mean annual rainfall 
and minor changes in the water balance, rather than changes in catchment properties or underground permeability. 
According to Onywere et al. [53], the flooding in Kenya in Eastern African Rift Valley lakes has been unprecedented and 
is influenced by rainfall patterns and climatic cycles. Rainfall affects not only the water level in lakes but also the water 
quality since, due to the low water level in the year 2000 [5], there have been ecological changes due to human activities, 
and changes in climatic conditions resulted in extreme turbidity, high siltation, and low invertebrate life in the open 
waters.

With the increase in rainfall, there is an increase in soil erosion due to surface runoff and vice versa. Still, the Lake 
Baringo case study is not a typical day-to-day encounter since even in 2003, when rainfall greatly reduced, soil erosion in 
the basin still increased. This incident is due to other contributing factors, such as human activities, and natural factors, 
such as winds. It should be noted that the results show a direct relationship between soil erosion and lake water levels, 
considering that Lake Baringo has no visible outlet and utilizes underground water outlets. The study by Tufa et al. [64] 
found that the Lake Haramaya Catchment has experienced severe degradation due to intensive cultivation, deforestation, 
and unwise utilization of land and water resources, leading to soil erosion. The average annual soil erosion in the study 
area was estimated to be 24.315 tons/ha/year, primarily due to high rainfall erosivity. There was a direct relationship 
between rainfall and sediment yield.

The prediction of water levels for Lake Baringo shows that there will be a further increase in the year 2030. The research 
is seconded by Herrnegger et al. [78], who modeled the probability of Lake Baringo with a freshwater lake, merging with 
Lake Bogoria, a salty water lake. The same incident happened when Lake Baringo merged with Lake 92.

The study of the factors affecting the water levels in lakes goes beyond being beneficial to academic circles as it is a 
blueprint for decision-making and policy formulation in resource management and conservation. The resources are not 
only tied down to water but also land survey, land use, urban planning, mining, agriculture, wildlife and environmental 
conservation.

However, there were a few challenges that need to be addressed by future researchers. Data contrasts: the research was 
mainly done using satellite images as there is no historical ground for accuracy assessment. Due to financial constraints, 
all the satellite images used in the study are free and publicly available data to the public. However, you must use high-
resolution satellite images in your research for better and highest-quality policy-making output. The time factor was also 
not a luxury, and there is a need for more studies on the outlet for Lake Baringo, its effects on the underground water 
resources, and the effects of tectonic activities on the water level.

In summary, this study has shown the factors that caused the fluctuations of water levels in Lake Baringo are human 
activities, climatic and topographical changes. This research offers valuable insight for governments in decision-making 
and policy formulation and is a stepping stone for future researchers on sustainable water resource management and 
environmental conservation.

5  Conclusions

In conclusion, the study determined the water level fluctuations and found that the water level has been increasing over 
the years, with 2020 being the highest. Some causes of the water level fluctuation include human activities, which was 
indicated by the land use land cover, where the forest cover decreased while agricultural and urban areas increased. 
The water level was clearly shown to have increased as the rainfall increased. With the increase in agriculture without 
enforcing conservation policies plus the increased rainfall, soil erosion increased, and with the increased surface runoff, 
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siltation has increased in the Lake. From the prediction model, the water level will increase by 43.74% when the water 
level 1990 is used as the base.

This research contributes to the existing body of knowledge and the community by encouraging open-source software 
like the MOLUSCE tool in QGIS. The research output can help the county and national government in decision-making, 
specifically in conservation, resettlement, and planning. Most of the studies that have been done in Lake Baringo are 
limited to the climatic causes of fluctuations and the potential of a cross mix of Baringo and Bogoria, to name a few. Still, 
this research fills the gap by analyzing all the causes of the fluctuation and predicting the lateral extent and the water level 
of the Lake. The findings highlight several crucial factors that influence the growth in lake water levels, which aid in our 
understanding of this significant environmental occurrence. Because of climatic and precipitation pattern variations, our 
results could be inconsistent. Depending on the period and location of past studies, different meteorological conditions 
that impacted water levels may have been observed.

Despite the project being successful, the project will not go without challenges. Some include the lack of ground data 
to verify the spatially obtained data and financial constraints, as the study of the effects of the tectonic forces on the water 
level has not been analyzed even though Lake Baringo being in Great Rift Valley tectonic forces has a significant impact 
to the lakes. It should also be noted that the lake has no visible water outlets, as underground outlets are assumed to 
be used. Some unanswered questions that need to be investigated further are the effects of tectonic forces on the lake 
water level and the effects of siltation on the lake’s underground water outlets. Further research avenues that need to 
be looked into is how the new riparian buffers are to be drawn and gazetted, especially since the riparian acts of Kenya 
do not give a definite demarcation where the riparian reserve for tidal rivers and Lake should not be less than 30 m 
from the high-water mark. The water quality of the Lake also has to be researched to determine the effects of the water 
fluctuations on the ecosystem. The dynamic change in water levels within lakes, a multifaceted phenomenon intricately 
influenced by climatic variability, hydrological dynamics, and anthropogenic interventions, underscores the complexity 
and interconnectedness of environmental factors shaping aquatic ecosystems.
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