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Abstract: East African lakes support the food and water security of millions of people. Yet, a
lack of continuous long-term water quality data for these waterbodies impedes their sustainable
management. While satellite-based water quality retrieval methods have been developed for lakes
globally, African lakes are typically underrepresented in training data, limiting the applicability of
existing methods to the region. Hence, this study aimed to (1) assess the accuracy of existing and
newly developed water quality band algorithms for East African lakes and (2) make satellite-derived
water quality information easily accessible through a Google Earth Engine application (app), named
LAndsat water QUality retrieval tool for east African lakes (LAQUA). We collated a dataset of existing
and newly collected in situ surface water quality samples from seven lakes to develop and test Landsat
water quality retrieval models. Twenty-one published algorithms were evaluated and compared with
newly developed linear and quadratic regression models, to determine the most suitable Landsat
band algorithms for chlorophyll-a, total suspended solids (TSS), and Secchi disk depth (SDD) for East
African lakes. The three-band algorithm, parameterised using data for East African lakes, proved the
most suitable for chlorophyll-a retrieval (R2 = 0.717, p < 0.001, RMSE = 22.917 µg/L), a novel index
developed in this study, the Modified Suspended Matter Index (MSMI), was the most accurate for
TSS retrieval (R2 = 0.822, p < 0.001, RMSE = 9.006 mg/L), and an existing global model was the most
accurate for SDD estimation (R2 = 0.933, p < 0.001, RMSE = 0.073 m). The LAQUA app we developed
provides easy access to the best performing retrieval models, facilitating the use of water quality
information for management and evidence-informed policy making for East African lakes.

Keywords: limnology; Earth observation; inland waters; Google Earth Engine; band ratios; application;
chlorophyll-a; total suspended solids; Secchi disk depth

1. Introduction

East Africa contains more than 400 hundred volcanic and tectonic lakes larger than
10 hectares [1], including some of the world’s oldest, largest, and deepest [2]. These
lakes support the livelihoods of more than 100 million people, with more than 30 million
people in Uganda, Kenya, and Tanzania relying on Lake Victoria alone, the world’s largest
tropical lake and second largest freshwater lake overall [3]. East African lakes provide
numerous benefits to people including drinking water, fisheries, transportation, irrigation
for agricultural land, industry, recreation, and tourism [3–5]. The region also represents a
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critical freshwater ecoregion of high biodiversity [6], demonstrating the importance of East
African lakes to both people and wildlife.

The monitoring and management of lake water quality are essential for its long-
term sustainable use [7]. Regular in situ water sampling can be both time-consuming
and resource-intensive, limiting the spatial and temporal coverage of monitored lakes.
Furthermore, regular in situ sampling is not feasible for remote or inaccessible lakes or
requires substantial infrastructure to sample offshore large lake systems. Satellite remote
sensing provides a cost-effective alternative for monitoring lake water quality across large
spatial and temporal scales [8,9]. The water-leaving reflectance of a waterbody measured by
satellites can be used to estimate a range of water quality indicators, including chlorophyll-a,
suspended solids concentrations, and Secchi disk depth (SDD) [10–13]. Classical statistical
approaches or machine learning models are used to determine the relationship between
a water quality indicator and the water-leaving reflectance in different regions of the
electromagnetic spectrum, measured in distinct satellite “bands”. Band combinations and
band algorithms have been developed for different satellite sensors to retrieve various
water quality parameters [14–16]; however, in situ sampling and analytical laboratory
methods are essential for model development and validation of satellite estimates. After
retrieval models have been developed, satellite remote sensing can be used to augment
regular monitoring, to quantify spatial variation within lakes, and to explore temporal
trends using archives of satellite imagery [9].

The water quality indicators investigated in this study were chlorophyll-a, total sus-
pended solids (TSS), and SDD. Chlorophyll-a is an optically active photosynthetic pigment
present in plants, algae, and cyanobacteria. It absorbs light in red wavelengths while the
surrounding cell strongly reflects light in near-infrared (NIR) wavelengths, creating a char-
acteristic spectral signature known as the red-edge [17]. The chlorophyll-a concentration of
a waterbody provides a proxy measure of algal biomass and potential productivity; it can
identify the presence of phytoplankton or harmful algal blooms and can provide an indica-
tion of degree of eutrophication [11,18]. Total suspended solids include a mixture of organic
and inorganic particles within the water column. These include phytoplankton, as well as
suspended sediments from surface run-off. Suspended sediments can carry heavy metals,
pollutants, and nutrients, and, thus, TSS can act as a proxy for other water quality param-
eters [19]. High sediment loads can also increase the temperature of the water’s surface,
as well as affect light penetration into deeper layers of the water column [20]. Suspended
sediments increase the backscattering of light from the water’s surface, particularly in the
green and red wavelengths [21]. Secchi disk depth is a measurement of water clarity. It is
impacted by the presence of phytoplankton, suspended sediments, and coloured dissolved
organic matter (CDOM) and is commonly used to estimate the depth in the water column
at which net primary production can occur [22]. Furthermore, SDD influences primary
productivity and the growth of aquatic plants [23]. The optical properties of water relating
to SDD vary depending on the waterbody; less-absorbing short visible wavelengths are
more suitable for clear ocean waters, whereas red light has been linked to Secchi disk depth
retrieval in optically complex waters [23]. Monitoring chlorophyll-a, TSS, and SDD together
provides a holistic assessment of the health of a waterbody.

Water quality retrieval models have previously been developed for inland waters
using ocean colour satellites [23]. These satellites, including Sea-viewing Wide Field-
of-view Sensor (Sea-WiFS), Moderate-resolution Imaging Spectroradiometer (MODIS),
and Medium-resolution Imaging Spectrometer (MERIS), provide frequent revisit times
and high spectral resolution; however, their low spatial resolution is too coarse for small
inland waterbodies (250–1000 m). The Sentinel 2 Multispectral Instrument (MSI) has a
higher spatial resolution of up to 10 m pixel size and has also been used for water quality
monitoring [24,25], yet data are only available from 2015 to present. In contrast, the Landsat
series provides data with a 30 m spatial resolution suitable for small waterbodies and an
archive of imagery backdated to 1972. Its broad spectral bands are designed for monitoring
land, rather than water quality in lakes. Despite this, Landsat imagery has been used
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successfully to estimate a range of water quality parameters in inland waters [11,26,27].
Its multidecadal archive of imagery is vital for investigating long-term changes in lake
conditions in response to climatic and land-use impacts [28].

East African lakes have poor representation in global water quality retrieval models
and datasets [19,26,29–32]. This could be attributed to the lack of publicly available water
quality data for East African lakes and the irregular monitoring of these waterbodies [29].
There are region-specific differences in lake and atmospheric conditions [33], and the
conditions present in East Africa may not be captured by these global models. Therefore,
the accuracy of global models for East African lakes is likely to be limited and difficult
to validate without in situ surface water data. Water quality retrieval models have been
developed for specific lakes in East Africa [11,34–36]. However, these studies often use
data from individual lakes or limited time periods, and the transferability of the models to
other lakes in the region is not known. Models developed for East African lakes, covering
the range of water quality conditions present, are required for robust and accurate water
quality retrieval methods using satellite remote sensing data. Furthermore, satellite remote
sensing models often require domain-specific knowledge and experience of working with
satellite imagery for their application. The accessibility of remote sensing tools needs to be
improved if water quality retrieval models are to be used for regular monitoring and water
management decision making [9].

Therefore, to improve the accessibility of water quality remote sensing for water
managers and practitioners, this study aimed to:

1. Compile a ground truth database of water quality observations and Landsat satel-
lite match-ups for East African lakes from existing studies supplemented by newly
collected data.

2. Identify existing Landsat water quality retrieval algorithms for chlorophyll-a, TSS,
and SDD and assess their accuracy for East African lakes.

3. Develop region-specific models where no suitable global models were available.
4. Develop an easy-to-use Google Earth Engine application incorporating the best per-

forming models for each parameter.

2. Methods

A summary of the overall methodology and modelling approach is provided in Figure 1.

2.1. Study Lakes

East African lakes range from freshwater to highly productive alkaline–saline soda
lakes, largely due to the varied geology and climate of the East African Rift System and
the endorheic nature of many lakes [2,37,38]. Lake morphology and water chemistry are
influenced by volcanic and tectonic activity, as well as geothermal input from underground
hot-spring systems [2,39]. The region is mostly characterised by bimodal rainfall, with
a long (March to May) and a short (October to December) rainy season [40]; however,
seasonality varies by latitude. Seasonality and interannual variability in climate are largely
governed by the Indian Ocean Dipole, the intertropical convergence zone, and the El
Niño–Southern Oscillation (ENSO) [40,41].

We selected seven study lakes across Ethiopia, Kenya, and bordering Kenya, Uganda,
and Tanzania (Lake Victoria), covering a range of climatic, morphological, and water quality
conditions (Figure 2A, Table 1). Lake selection was also determined by the availability of in
situ water quality data for model development and is discussed further in Section 2.2. Four
of the seven study lakes are freshwater, covering a range of productivities and turbidities.
The freshwater lakes are Ziway and Chamo in Ethiopia, Baringo in Kenya, and Victoria
spanning the borders of Kenya, Uganda, and Tanzania. The remaining three lakes are
the alkaline–saline soda lakes Bogoria and Oloidien in Kenya, and Turkana spanning the
border of Kenya and Ethiopia. Bogoria and Oloidien are important Lesser Flamingo feeding
lakes and Turkana is the world’s largest alkaline–saline lake [42]. Lake characteristics are
summarized in Table 1.
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Figure 2. (A) The seven study lakes with in situ water quality data used for model development: 1 
is Ziway, Ethiopia; 2 is Chamo, Ethiopia; 3 is Turkana, Kenya/Ethiopia; 4 is Baringo, Kenya; 5 is 
Bogoria, Kenya; 6 is Oloidien, Kenya; 7 is Victoria, Kenya/Uganda/Tanzania. (B) The data collection 
transects for Lake Baringo, Kenya, in September 2023. Diamonds indicate data collected on 18 Sep-
tember and triangles indicate data collected on 19 September. (C) The region in which in situ data 
were collected for Lake Victoria in this study. (D) The data collection transects in Winam Gulf, in 
the Kenyan region of Lake Victoria, on 13 September 2023. Diamonds indicate individual sampling 
points along each transect. 

  

Figure 2. (A) The seven study lakes with in situ water quality data used for model development: 1 is
Ziway, Ethiopia; 2 is Chamo, Ethiopia; 3 is Turkana, Kenya/Ethiopia; 4 is Baringo, Kenya; 5 is Bogoria,
Kenya; 6 is Oloidien, Kenya; 7 is Victoria, Kenya/Uganda/Tanzania. (B) The data collection transects
for Lake Baringo, Kenya, in September 2023. Diamonds indicate data collected on 18 September
and triangles indicate data collected on 19 September. (C) The region in which in situ data were
collected for Lake Victoria in this study. (D) The data collection transects in Winam Gulf, in the
Kenyan region of Lake Victoria, on 13 September 2023. Diamonds indicate individual sampling
points along each transect.
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Table 1. Lake characteristics of the seven lakes used for model development. Lakes are ordered by
latitude from north to south. Asl means above sea level. Data were obtained from the LAKEAtlas
dataset [1].

Lake Country Freshwater or
Saline

Average Surface
Area (km2)

Average Depth
(m)

Elevation
(m asl)

Watershed
Area (km2)

Ziway Ethiopia Freshwater 411.96 13.9 1636 7296.3

Chamo Ethiopia Freshwater 312.04 26.9 1109 1940.6

Turkana Ethiopia/Kenya Saline 7473.43 31.8 361 149,329.0

Baringo Kenya Freshwater 125.43 14.5 968 6604.4

Bogoria Kenya Saline 36.25 23.2 990 760.7

Oloidien Kenya Saline 5.21 8.9 1883 144.7

Victoria Kenya/Uganda/
Tanzania Freshwater 67,166.2 41.1 1134 265,373.0

2.2. In Situ Data

In this study, we collated in situ water quality data for East African lakes from previous
studies conducted by the authors or published in the literature (Figure 2A, Table 2). The
literature search was conducted using Google Scholar, as well as global lake databases
such as the Global Environmental Management System GEMStat [30] and the GLObal
Reflectance community dataset for Imaging and optical sensing of Aquatic environments
(GLORIA) [31]. Only studies providing georeferenced water quality data collected from the
surface were included. Studies with sampling points along lake shorelines, or data without
Landsat satellite match-ups, were excluded. Data from previous studies were obtained
for two Ethiopian freshwater lakes, Chamo and Ziway, sampled monthly from 2005 to
2006 [43], and for three Kenyan saline lakes, Bogoria, Oloidien, and Turkana, sampled
from 2010 to 2016 [11,44]. To ensure that a diverse range of water quality conditions
were captured for East African lakes, a further two lakes were sampled for this study.
Winam Gulf (also known as Nyanza Gulf), Lake Victoria, and Lake Baringo in Kenya were
selected as optically complex freshwater lakes covering a range of chlorophyll-a and TSS
concentrations. The addition of data from these lakes compliments the less turbid Ethiopian
freshwater lakes and the Kenyan highly productive saline lakes (Figure 2).

Table 2. Summary of the sampling dates and water quality parameters measured for each study lake
prior to match-ups with Landsat reflectance data and data cleaning for model development. For lakes
with source “This study”, data were either collected specifically for this study (Victoria and Baringo)
or provided by co-authors and are not publicly available. See the “Data availability” statement for
more information.

Lake Date Parameters Number of
In Situ Samples Source

Ziway 24 January 2005–
4 January 2006 Chl-a 12 [42]

Chamo 25 March 2006–
8 February 2007 Chl-a 12 [42]

Turkana 1 September 2016–
4 September 2016 Chl-a, TSS, SDD 12 This study

Baringo 18 September 2023, 19 September 2023 Chl-a, TSS, SDD 15 This study
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Table 2. Cont.

Lake Date Parameters Number of
In Situ Samples Source

Bogoria

21 April 2010–
26 April 2010,
1 April 2012–
11 April 2012

Chl-a, TSS, SDD 39 [11,43]

Oloidien 31 March 2011–
1 April 2011 Chl-a, TSS, SDD 10 [43]

Victoria 13 September 2023 Chl-a, TSS, SDD 15 This study

In situ water samples were collected for Lake Victoria and Lake Baringo in September
2023 as close as possible to Landsat 8 and 9 overpass dates (14 September for Victoria and
15 September for Baringo). Sampling was conducted using a small boat, and two transects
were performed for each lake. Transect locations were determined using the most recent
cloud-free Sentinel-2 imagery to select sites that (a) enabled us to capture a gradient of TSS,
chlorophyll-a, and SDD, and (b) were at least 1 km from the nearest shoreline to reduce the
adjacency effects [45]. Water samples were collected between 9 a.m. and 2 p.m. local time
under cloud-free conditions.

Data for Lake Victoria were collected from the Kenyan Winam Gulf region on 13
September 2023 (Figure 2C). Transect one started in the productive Kisumu Bay and headed
5 km out towards clearer waters (Figure 2D), sampling every 500 m to capture the gradient
of chlorophyll-a concentrations at 10 sites. Transect two started in the sediment plume
from a tributary (lat: −0.177, lon: 34.776) (Figure 2D) and headed out 2.5 km towards clear
water, sampling every 500 m for 5 sites. Lake Baringo data were collected on 18 September
2023 and 19 September 2023. Transect one started in the turbid waters from the Endao and
Molo tributaries in the south of the lake (Figure 2B) and continued for 5 km towards the
clearer waters in the centre of the lake, with data collected every 500 m for 10 sites. Transect
two covered 7 sites over 3.5 km from north to south across the north of the lake to sample
the chlorophyll-a and TSS concentrations in the clearer waters.

Three replicate surface water samples were collected at each site for chlorophyll-a and
TSS determination. Chlorophyll-a samples were stored in the dark below 4 ◦C to prevent
chlorophyll degradation prior to analyses. Secchi disk depth was measured after water
sample collection to limit the disturbance of the water. GPS coordinates were recorded for
each site to enable match-ups with satellite imagery.

For chlorophyll-a determination, water samples were filtered through 47 mm 0.7 µm
pore size glass fibre filter discs, and the filter discs were frozen overnight to aid the bursting
of cells. Chlorophyll-a concentrations were then determined using the standard methods
for the examination of water and wastewater trichromatic method [46] with a single beam
Shimadzu UV-1800 spectrophotometer (Equation (1)):

Chlorophyll-a mg/m3 =
(11.85(abs 664)− 1.54(abs 647)− 0.08(abs 630))× EVL

SVm3
(1)

where abs is absorbance, EVL is extract volume in litres, and SVm
3 is the volume of the

sample in m3. TSS concentrations were determined by filtering water samples through
preweighed 47 mm 1.5 µm pore size 934-AH RTU Whatman glass fibre filter discs and
drying in an oven at 105 ◦C, following the standard methods for the examination of water
and wastewater total suspended solids protocol [46]. Sampling methods were the same for
each lake, with the exception of TSS samples from saline lakes, which included an additional
step of washing the filtered samples with distilled water to remove the salt content.
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2.3. Satellite Imagery

Landsat Thematic Mapper (TM), Enhanced Thematic Mapper (ETM+) and Operational
Land Imager (OLI) top-of-atmosphere (TOA) and surface reflectance (SR) images were
accessed using the Google Earth Engine Python API [47]. Both TOA and SR data were
acquired to identify the most suitable Landsat reflectance dataset available in Google
Earth Engine for each water quality parameter. The images were Collection 2, Tier 1;
datasets include only the highest quality images georeferenced within 12 m root mean
square error (RMSE) and intercalibrated for consistency across Landsat sensors [48]. The
surface reflectance images were atmospherically corrected using the LEDAPS algorithm
for Landsat 5 (TM) and 7 (ETM+), and the LaSRC algorithm for Landsat 8 and 9 (OLI).
The closest cloud-free satellite image match-ups were obtained for each study lake and
sampling date. Ideally, match-ups between in situ data and satellite imagery would occur
on the same date; however, to ensure the training dataset was of a sufficient size whilst
limiting variations in water quality, match-ups within a 10-day window were selected [11].
Remaining clouds were masked using the pixel quality flags generated by the CFMASK
algorithm [49]. In situ sampling sites covered by cloud, falling within the scan line error
no data regions of Landsat 7 images or without Landsat image match-ups within a 10-day
window, were removed from further analyses. Reflectance values were extracted from the
corresponding pixels at the remaining 58 sampling locations for all visible and infrared
satellite bands, from both TOA and SR imagery. Match-up differences between in situ
sampling and Landsat imagery were as follows: Victoria, 1 day; Baringo, 4 days; Turkana,
6 days; Oloidien, 1 day; Bogoria, ranged from 2 to 7 days; Chamo, 3 to 4 days; and Ziway,
ranging from same-day satellite overpass to 9 days.

2.4. Water Quality Retrieval Algorithms

A search of the literature was conducted to identify existing Landsat water quality
retrieval algorithms for each parameter, which were then assessed for their suitability for
East African lakes. The literature search was used to compile a list of both:

• Band algorithms (also known as spectral indices): mathematical equations comprising
combinations of Landsat reflectance bands.

• Fully parameterised models: band algorithms that have been calibrated against
ground-based observations to estimate model coefficients.

We chose to focus on models developed using band algorithms because these are
simple to interpret and can be more easily implemented in an automated water quality
monitoring tool than more complex models. The search of the literature was conducted
using Google Scholar and the Google search engine. From the Landsat algorithms identified
in the literature, we only selected those (i) developed for application to multiple waterbodies
(global or regional); or (ii) specifically developed for East African waterbodies. Algorithms
developed for individual lakes outside of East Africa were not evaluated. Eight algorithms
were identified for chlorophyll-a, seven for TSS, and six for SDD (Table 3).

Five of the eight chlorophyll-a algorithms, namely, NDCI, 2BDA, SABI, NRVI, and
Tebbs et al. (2013), utilise the red-edge absorbance and reflectance peak characteristic of
photosynthetic phytoplankton [17]. The 3BDA, FLU BLUE, and KIVU algorithms use only
the visible reflectance more dominant in clearer waters with lower concentrations of phyto-
plankton. Similarly, the blue, green, and red bands are frequently used for TSS retrieval
due to the strong visible reflectance of sediment-rich waters; however, NIR reflectance has
also been shown to correlate with TSS at intermediate concentrations [21]. None of the SDD
algorithms utilise the NIR band, likely due to the strongly absorbing features of water at
these wavelengths when phytoplankton and surface sediments are not present.
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Table 3. Band algorithms for estimating chlorophyll-a, TSS, and SDD from Landsat satellite imagery.
The band combination colours relate to the respective reflectance band in Landsat imagery. The
central wavelengths of each band are blue, 482 nm; green, 562 nm; red, 655 nm; NIR, 865 nm. Index
names are provided; however, if no name is published, the band algorithm is named after the example
reference. NDTI was tested for both TSS and SDD retrieval.

Parameter Index Band Combination Example Reference

Chl-a

Normalised Difference Chlorophyll Index
(NDCI)

(NIR−Red)
(NIR+Red)

[25,27]

2-Band Algorithm (2BDA) NIR
Red [25]

3-Band algorithm (3BDA) Blue − (Red × Green) [50]

Fluorescence Line Height Blue (FLH BLUE) (Green − Red) + (Blue − Red) [50]

Surface Algal Bloom Index (SABI) (NIR−Red)
(Blue+Green) [50,51]

3BDA-like (KIVU) Blue − Red
Green [50]

NRVI ( Red
NIR −1)

( Red
NIR +1)

[52]

Tebbs et al. (2013) (−135) + (451)×
(

NIR
Red

)
± 72 [11]

TSS

Suspended Matter Index (SMI) (NIR+Red)
2

[53]

Total Suspended Matter Index (TSMI) (Green+Red)
2

[54]

Normalised Suspended Material Index (NSMI) (Red+Green−Blue)
(Red+Green+Blue) [21]

Normalised Difference Suspended Sediment
Index (NDSSI)

(Blue−NIR)
(Blue+NIR) [21]

2-Band Algorithm 1 (2BDA1) (Green−Blue)
(Green+Blue)

[17]

2-Band Algorithm 2 (2BDA2) (Red−Blue)
(Red+Blue) [17]

Normalised Difference Turbidity Index (NDTI) (Red−Green)
(Red+Green) [27]

SDD

Kloiber Blue
(Red+Blue) [55]

Lathrop Green [56]

Normalised Difference Turbidity Index (NDTI) (Red−Green)
(Red+Green)

[27]

Empirical Band Ratio (EBR) Blue
Red [57]

Lu2023T2 Blue
Red − Blue

Green [58]

Song et al. (2022) −2.93×
(

Red
Blue

)
+ 2.83×

(
Blue

Green

)
+ 2.81 [59]

The first published parameterised model directly tested in this study was the chlorophyll-a
retrieval algorithm developed for Lake Bogoria, Kenya, by Tebbs et al. (2013) [11]. The
model is a parameterised version of the 2BDA described in Table 3, utilising reflectance
bands in the red and NIR. The Tebbs et al. (2013) method was the only Landsat retrieval
model identified from our literature search that was developed specifically for an East
African lake. The second published parameterised retrieval model compared with the band
algorithms was the unified model for SDD retrieval developed by Song et al. (2022) [59]
using data from 2235 lakes across the world. The model was trained using data from
African lakes; however, the African continent has the lowest representation in the model.
Published models were validated by applying them to the satellite image reflectance values
and comparing the predicted water quality parameters with the observed values.

In addition to the algorithms identified from the literature, we assessed other suitable
band algorithms using a grid-search approach to test the relationship between each water
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quality parameter and different single bands, band additions, band subtractions, band
ratios, and normalised differences between bands.

2.5. Model Development and Validation

Pearson correlations were calculated between chlorophyll-a, TSS, and SDD to test for
collinearity. Correlations above 0.7 were not identified, so models were developed for all
parameters. For the chlorophyll-a models, values above 200 µg/L were removed as four
datapoints from the saline lakes were significantly larger than most of the training data
and had a strong influence on model performance. These samples have high uncertainty
in chlorophyll-a values due to clumping of the cyanobacterial mats or dense subsurface
layers, disturbance of these clumps during sampling, and the patchiness of the bloom
conditions [11]. For the SDD models, only data collected in this study from Lake Victoria
and Lake Baringo were used. Including data obtained from previous studies reduced the fit
of all models, possibly due to differences in the sampling approaches, observer biases when
reading the SDD, or due to the surface scums of cyanobacteria in the saline lakes that are
disturbed during sampling [60], making match-ups with the satellite imagery less accurate.
The summary statistics for the final in situ water quality data are provided in Table 4.

Table 4. Summary statistics for the in situ water quality dataset used for model development and
validation. Statistics are provided for individual lakes to show the range of conditions at each site, as
well as the overall summary statistics for the modelling dataset.

Site Parameter Mean Median Min Max n

Baringo

Chl-a (µg/L) 9.44 9.44 5.43 12.8 15

TSS (mg/L) 23.3 14.0 10.9 71.5 15

SDD (m) 0.265 0.280 0.140 0.330 15

Bogoria

Chl-a (µg/L) 115.9 109.4 64.7 169.0 8

TSS (mg/L) 44.8 46.5 23.0 68.0 8

SDD (m) - - - - -

Chamo

Chl-a (µg/L) 35.1 35.1 33.2 37.0 2

TSS (mg/L) - - - - -

SDD (m) - - - - -

Oloidien

Chl-a (µg/L) 129.8 129.8 129.8 129.8 1

TSS (mg/L) 65.3 62.0 60.0 74.0 3

SDD (m) - - - - -

Turkana

Chl-a (µg/L) 4.13 3.09 1.66 9.69 5

TSS (mg/L) 1.78 1.48 0.552 2.75 5

SDD (m) - - - - -

Victoria

Chl-a (µg/L) 25.5 20.0 9.72 69.8 15

TSS (mg/L) 12.0 12.4 7.90 16.2 15

SDD (m) 0.673 0.700 0.500 0.800 15

Ziway

Chl-a (µg/L) 38.2 36.3 34.0 47.2 5

TSS (mg/L) - - - - -

SDD (m) - - - - -

All sites

Chl-a (µg/L) 36.5 18.6 1.66 169.0 51

TSS (mg/L) 24.1 13.9 0.552 74.0 46

SDD (m) 0.469 0.415 0.140 0.800 30
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A jack-knife modelling approach, also known as leave-one-out cross-validation, was
used for model development and validation. This resampling approach removes one
datapoint from analysis, trains the model on all other datapoints, and tests the accuracy of
the model on the removed datapoint. Model training is repeated and validated using all
datapoints, and an average value for all trained models is calculated. This method provides
accurate estimates of variance and bias when developing models on small datasets [61,62].
Linear and quadratic polynomial regression models were developed for all parameters,
using both raw and log-transformed response variables. Additionally, all models were
developed and tested using both SR and TOA Landsat data to determine which Landsat re-
flectance dataset gave the best performance for each band ratio or model. Log-transformed
chlorophyll-a values were better for all reflectance data models; however, for TSS and SDD,
only the TOA reflectance data performed better with log-transformed response variables.
The best performing models for each band algorithm, for example, linear regression with
TOA reflectance, were validated by comparing the predicted values with the observed
values. To assess the accuracy of each model, the root mean squared error (RMSE), mean
absolute error (MAE), mean absolute percent error (MAPE), and bias were calculated. The
performance metrics were calculated as follows:

RMSE =

√
∑n

i=1(Xi − Xs)
2

n
(2)

MAE =
∑n

i=1|XS − Xi|
n

(3)

MAPE = ∑ n
i=i

(Xi − XS)

Xi
(4)

Bias =
1
n∑ n

i=1(XS − Xi) (5)

where Xi are the in situ observations, XS are the satellite-derived parameters, and n is the
number of match-ups between ground data and satellite data. The best performing models
for each parameter were also verified using visual comparison of output maps with true
colour satellite imagery.

2.6. App Development and Model Application

To ensure that the models developed in this study are accessible and can be used
for water resource monitoring and management, a Google Earth Engine application was
developed, named the LAndsat water QUality retrieval tool for East African lakes (LAQUA).
The LAQUA application can be accessed at (https://emmatebbs.users.earthengine.app/
view/laqua). We chose Google Earth Engine because it provides access to archives of
Landsat imagery, facilitates faster analyses with cloud processing, and provides interactive
tools for applying the models directly to a region of interest. Application development
steps are summarised in Figure 3. Landsat 5, 7, 8, and 9 TOA Collection 2 Tier 1 images
were filtered to remove imagery with more than 10% cloud cover for the study region, and
the remaining clouds were masked using the CFMASK pixel quality flags described in
the satellite imagery section. Water pixels were identified using the Modified Normalised
Difference Water Index (MNDWI) [15]. The MNDWI is calculated as follows:

MNDWI =
Green − SWIR
Green + SWIR

(6)

where Green is reflectance measured between 520 nm and 600 nm, and SWIR (shortwave
infrared) is reflectance measured between 1550 nm and 1750 nm by the Landsat satellites.
Values greater than 0 indicate water; however, a threshold for 0.4 was used to more
accurately distinguish water from other pixels [63], masking land, floating vegetation, and
dense cyanobacterial surface scums.

https://emmatebbs.users.earthengine.app/view/laqua
https://emmatebbs.users.earthengine.app/view/laqua
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The best performing water quality retrieval models were applied to the Landsat
reflectance bands, and the median value for each pixel for each month was calculated to
produce monthly maps for the selected date range. The monthly maps were averaged
over the region of interest to produce lake-wide mean monthly time series of chlorophyll-a,
TSS, and SDD. Monthly averages were plotted for each water quality parameter for the
desired date range within the application user interface. Maps were produced within the
map panel to visualise the median true colour image, chlorophyll-a concentration, TSS
concentration, and SDD for the previous two months. The two-month medians were used
for more effective visualisation of the larger lakes covered by multiple Landsat tiles to
mitigate the influence of increased cloud cover and no data regions. Visualising retrieval
maps for the largest lakes, such as Lake Victoria, proved more challenging, and cloud-free
monthly composites covering the whole lake were less common. Despite this limitation for
the largest lakes, lake-wide monthly averages were estimated using the regions covered by
Landsat imagery for each month.

The user simply defines a study region using one of the polygon geometry tools and
selects a start and end date using the calendar tools. Polygons can be drawn around whole
lakes or individual regions of a waterbody, or a point can be used to extract data from
a single pixel. Time series graphs can be saved as a scalable vector graphic (SVG) or a
portable network graphic (PNG), and data can be exported as a comma-separated values
(CSV) file for use in further analyses. The retrieval models can be applied to Landsat 5, 7, 8,
and 9 imagery from January 2000 to the present day for use in temporal studies and for
identifying changes over time.

3. Results

Table 5 provides a summary of the best performing models for each water quality
parameter. Models for chlorophyll-a, TSS, and SDD are then discussed in further detail in
the relevant Sections 3.1–3.4, which describe the validation of the best performing models
for each water quality parameter using the Kenyan lakes Baringo and Bogoria as case
studies, the comparison between the predicted values for each lake with those reported
in the published literature, and the validation of the Google Earth Engine app using true
colour imagery.

Table 5. Model validation results between observed and predicted values for the published band
algorithms and models, as well as the best performing grid-search models for each parameter
developed in this study. For each band algorithm or model, only the results for the best linear
or quadratic regression model and the most suitable reflectance data, either surface reflectance
(SR) or top-of-atmosphere (TOA), are provided. Bold text highlights the best overall model for
each parameter.

Parameter Algorithm Model
Type Reflectance Intercept R2 p-Value RMSE MAE MAPE Bias

Chl-a
(µg/L)

NDCI Linear SR 6.13 0.520 0.000 31.6 19.2 64.8 −4.44

2BDA Quadratic SR 6.09 0.540 0.000 30.2 18.1 59.9 −5.84

3BDA Linear TOA 6.11 0.717 0.000 22.9 14.7 59.9 −4.61

FLH BLUE Quadratic SR 19.0 0.105 0.020 43.2 25.9 118.6 −15.42

SABI Quadratic SR 9.43 0.589 0.000 28.5 18.3 62.7 −8.22

KIVU Quadratic TOA 12.2 0.385 0.000 34.7 21.1 95.1 −10.50

NRVI Linear TOA 8.10 0.470 0.000 32.4 19.8 67.5 −6.59

Tebbs et al. (2013) Linear TOA 77.9 0.551 0.000 150.1 118.4 293.2 108.24

This study—
NDCI-SABI ratio Linear SR 6.49 0.578 0.000 28.9 17.3 56.8 −3.29
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Table 5. Cont.

Parameter Algorithm Model
Type Reflectance Intercept R2 p-Value RMSE MAE MAPE Bias

TSS
(mg/L)

SMI Quadratic TOA 14.8 0.043 0.169 21.9 14.4 102.4 −7.67

TSMI Quadratic TOA 11.7 0.253 0.000 18.8 12.1 84.8 −4.85

NSMI Quadratic TOA 13.5 0.147 0.008 20.4 12.9 100.3 −6.49

NDSSI Linear TOA 15.7 0.352 0.000 16.9 12.9 58.2 −0.36

2BDA1 Quadratic TOA 15.8 0.005 0.658 22.5 14.6 112.9 −7.55

2BDA2 Quadratic TOA 11.9 0.232 0.001 19.3 12.3 89.2 −6.03

NDTI Quadratic TOA 9.8 0.187 0.003 21.2 12.9 78.3 −5.64

This
study—MSMI Quadratic TOA 4.39 0.822 0.000 9.00 5.91 28.3 −1.25

SDD
(m)

Kloiber Quadratic TOA 0.025 0.913 0.000 0.065 0.050 12.6 −0.003

Lathrop Quadratic SR 0.070 0.850 0.000 0.084 0.066 17.1 −0.000

Song et al. (2022) Linear TOA 0.091 0.933 0.000 0.073 0.058 13.3 −0.025

NDTI Quadratic TOA 0.043 0.889 0.000 0.073 0.051 12.8 −0.006

EBR Quadratic TOA 0.024 0.904 0.000 0.068 0.054 13.8 −0.004

Lu2023T2 Quadratic TOA 0.035 0.875 0.000 0.077 0.056 12.6 −0.004

This
study—Red-Blue

ratio
Quadratic TOA 0.025 0.921 0.000 0.061 0.046 11.3 −0.003

3.1. Chlorophyll-a

The best performing chlorophyll-a model was the three-band algorithm (3BDA) with a
linear regression using top-of-atmosphere imagery (R2 = 0.717, p < 0.001, RMSE = 22.917 µg/L)
(Table 5, Figure 4). The model underestimates concentrations by an average of 4.6 ug/L,
though it performs significantly better and has lower error than the next best performing band
algorithm, the Surface Algal Bloom Index (SABI) (R2 = 0.589, p < 0.001, RMSE = 28.528 µg/L).
The Tebbs et al. (2013) model (R2 = 0.551, p < 0.001, RMSE = 150.084 µg/L), a parameterised
version of the 2BDA (R2 = 0.540, p < 0.001, RMSE = 30.168 µg/L), had a higher R2 than
the 2BDA parameterised to the dataset in this study; however, it overestimated values
by an average of 108.2 µg/L and had a significantly larger error. The positive bias could
be attributed to the Tebbs et al. (2013) model training dataset containing data from a
single highly productive saline lake with values ranging from 0 to more than 800 µg/L,
considerably larger than the training data used in this study. The best performing 3BDA
model is described in Equation (7):

log(Chlorophyll-a) = −63.2976 × (Blue − (Red × Green)) + 9.7195 (7)

where Blue is reflectance measured at 485 nm by Landsat 5 and 7 or 480 nm by Landsat 8
and 9, Red is reflectance measured at 660 nm by Landsat 5 and 7 or 655 nm by Landsat 8
and 9, and Green is reflectance measured at 560 nm by Landsat 5, 7, 8, and 9.
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Figure 4. (A) Models for the best predictive band algorithms for chlorophyll-a and total suspended
solids (TSS). There is no plot for Secchi disk depth (SDD) as the best performing model utilises the
existing Song et al. (2022) equation. Grey bars indicate 95% confidence intervals. Data points from
each study lake are distinguished by colour and marker shape and are summarized in the lake key.
(B) Predicted vs. observed values for the best performing models for chlorophyll-a, TSS, and SDD.
The black lines represent the linear relationship, and the grey bars are the 95% confidence intervals.
Dashed lines indicate a perfect match with a slope of 1 and intercept of 0.

3.2. Total Suspended Solids

The best performing TSS model was developed in this study and is based on a modified
version of the Suspended Matter Index (SMI), henceforth referred to as the Modified
Suspended Matter Index (MSMI) (Table 5, Figure 4). MSMI subtracts the SMI values from
an additional blue band, greatly improving the TSS prediction performance (R2 = 0.822,
p < 0.001, RMSE = 9.006 mg/L). The equation slightly underestimates TSS values by an
average of 1.246 mg/L. All models performed best with log-transformed TSS data and top-
of-atmosphere imagery. The TSS band algorithms identified from the literature performed
poorly, with R2 values ranging from 0.005 (2BDA1) to 0.352 (NDSSI). The best performing
MSMI quadratic model is described in Equation (8):

log(TSS) = −(32.3214 × (Blue − SMI)) +
(
−1447.8775 × (Blue − SMI)2

)
+ 3.8861 (8)

where SMI is calculated using Equation (9):

SMI =
(NIR + Red)

2
(9)

3.3. Secchi Disk Depth

The best performing SDD retrieval model was the linear model developed by Song
et al. (2022) using top-of-atmosphere imagery (R2 = 0.933, p < 0.001, RMSE = 0.073 m)
(Table 5, Figure 4). All other SDD models performed well, with R2 values ranging from
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0.850 (Lathrop) to 0.921 (red–blue ratio developed in this study) and small negative biases
in predicted values. With the exception of the Song et al. (2022) model, a quadratic model
best described the relationship between the band algorithms and log-transformed Secchi
depth. Only the Lathrop model performed better with Landsat surface reflectance data.
Despite all models performing well, the Song et al. (2022) model was developed using data
from 2235 global lakes and, thus, is likely to be more robust when applied to lakes outside
of the training dataset used in this study. The Song et al. (2022) model equation is described
in Table 3.

3.4. Google Earth Engine App and Validation

The best performing models for each water quality parameter were further validated
through visual comparison with true colour satellite imagery using the Google Earth
Engine app. Models were applied to Landsat imagery from September 2023 for the turbid
freshwater Lake Baringo and the highly productive alkaline–saline Lake Bogoria (Figure 5).
Chlorophyll-a concentrations showed distinct differences between the lakes, with Baringo
averaging concentrations of less than 20 µg/L and Bogoria exceeding concentrations of
100 µg/L. Total suspended solids were highest in the southwest region of Lake Baringo,
where the main tributaries enter the lake. Similarly, TSS values were highest for Bogoria in
the north of the lake near the Waseges–Sandai river delta [64], as well as near the dense
cyanobacterial blooms in the south of the lake. Secchi disk depths decreased in areas with
high suspended solids. The spatial patterns and concentrations of each parameter agree
with those observed in previous studies for both lakes [11,65]. Further visual validation
was conducted for lakes across Ethiopia, Kenya, Uganda, Tanzania, and Malawi using the
Google Earth Engine application. The retrieval models accurately detected algal blooms
and high-concentration sediment plumes visible in true colour imagery.
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4. Discussion

This study identified 21 published Landsat band algorithms for water quality retrieval
and evaluated their performance for East African lakes. Model accuracy was assessed using
a dataset of 58 observations from 7 lakes, collated from existing studies supplemented by
new data collection. Existing published algorithms were compared with newly developed
models identified using a grid-search approach. The most suitable band algorithms were
the following:

• For chlorophyll-a: a parameterised version of the three-band algorithm (3BDA).
• For total suspended solids (TSS): a modified version of the Suspended Matter Index

(SMI) developed in this study with an additional blue band.
• For Secchi disk depth (SDD): an existing global model developed by Song et al. (2022).

The best performing models were incorporated into a Google Earth Engine application
for easy and accessible use for researchers, water resource managers, and policymakers. The
application works globally for all inland lakes and waterbodies; however, the chlorophyll-a
and TSS models have been parameterised for more accurate water quality retrieval in East
African lakes. The SDD model described by Song et al. (2022) was developed using data
from 2235 lakes worldwide and is suitable for all lakes globally.

The 3BDA chlorophyll-a algorithm utilises the blue, red, and green Landsat satellite
bands. Interestingly, the algorithm does not utilise reflectance in the near-infrared (NIR)
band despite strong correlations being identified between NIR reflectance and chlorophyll-a
concentrations in other studies [11,14]. Landsat satellites were designed for monitoring
terrestrial surfaces; the NIR band measures reflectance at higher wavelengths beyond
the red edge than sensors specifically developed for water quality monitoring [17]. NIR
reflectance due to phytoplankton at these higher wavelengths is offset by the highly ab-
sorbing properties of water. Thus, with Landsat satellites, NIR reflectance is likely a better
predictor of chlorophyll-a in highly productive hypertrophic waters with a stronger NIR
backscattering peak [11] than for waters with a maximum chlorophyll concentration of
200 ug/L used for model development in this study. The 3BDA algorithm instead utilises
the backscattering in the green and absorbance in the red wavelengths associated with
chlorophyll-a [66]. The linear model can extrapolate beyond the training data range and
is suitable for a range of lake types, including both clear and turbid freshwater lakes, and
it can detect high chlorophyll-a concentrations in productive saline lakes. However, the
Tebbs et al. (2013) model may be more suitable for highly productive saline lakes given the
higher chlorophyll-a concentrations included in the training data.

The MSMI TSS retrieval algorithm developed in this study utilises the blue, red, and
NIR Landsat bands. The inclusion of the blue band greatly improved the performance of
the Suspended Matter Index (SMI). Of the best performing water quality retrieval models
for each parameter, MSMI was the only model that was developed using a quadratic
regression model. Therefore, the model is accurate for the training data range between 0
and 70 mg/L TSS; however, due to the curved nature of the quadratic regression, the model
likely underestimates TSS values higher than 70 mg/L (Figure 4). The poor performance
observed for the published TSS band algorithms could be attributed to the previous studies
developing models for other regions [53,54] and the optically complex nature of TSS
retrieval [67]. The published band algorithms are not robust when applied to other lakes
where the constituent organic and inorganic suspended solids may differ. Thus, regional
models suitable for the lakes of interest, such as the MSMI, or global models trained on a
range of optical water types, are required.

The SDD models had the best overall model performance. High model accuracy
could be attributed to the inclusion of just Lake Victoria and Lake Baringo data in model
development and validation. The other lakes were excluded due to significantly lower
performance of all models, possibly due to differences in observer bias and the effects
of disturbing cyanobacterial surface scums when sampling productive saline lakes [60].
Additionally, SDD shows low variation under stable hydrological conditions with minimal
human activity and is less likely to be influenced by differences in match-up windows
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between in situ sampling and satellite imagery [23]. The global model described by Song
et al. (2022) was the best performing Secchi disk depth retrieval model. Therefore, despite
including fewer lakes in the model validation, there can be high confidence in the robustness
of the SDD retrieval model and its suitability for East African lakes.

The three best performing models utilised top-of-atmosphere imagery. This suggests
that the LEDAPS and LaSRC atmospheric correction methods applied to Landsat imagery
are not suitable for inland waterbodies in East Africa, likely because they were designed to
resolve atmospheric effects over land [68]. Atmospheric correction is extremely challenging
over inland waters, and even the best performing atmospheric correction models have large
uncertainties in reflectances (20–30%) that translate to large uncertainties in chl-a and TSS
(25–70%) [69]. Other atmospheric corrections may be more suitable than the LEDAPS and
LaSRC methods; however, exploring the suitability of atmospheric correction methods was
outside the scope of this study. The literature review performed to collate suitable in situ
data also confirmed the lack of water quality data for East African lakes [30,31], particularly
surface water measurements suitable for satellite match-ups. The lack of surface water
measurements explains why very few “global” algorithms incorporate data from African
lakes. Without representative data for the optical water types present in East African
waterbodies and the atmospheric effects present in the region, global algorithms should
be applied to East African lakes with caution. Furthermore, the methods developed in
this study may not be as accurate for lake types not included in the training data. The
seven lakes used for modelling included both clear and turbid freshwater lakes, as well as
productive alkaline–saline soda lakes, covering a range of optical water types. However, the
deepest, clearest lakes such as Lake Tanganyika, shallow, seasonal pans, and lakes outside
of the training data region require further model validation with in situ water quality data.
Future work should prioritise the collection of water quality data for a wider range of
African waterbodies and explore machine learning methods for both the development
of water quality retrieval methods and for selecting the optimal band ratios for different
optical water types in East African lakes [26,52].

The three water quality retrieval models described here showed strong predictive perfor-
mance, chlorophyll-a (R2 = 0.717, p < 0.001, RMSE = 22.917 µg/L), TSS (R2 = 0.822, p < 0.001,
RMSE = 9.006 mg/L), and Secchi disk depth (R2 = 0.933, p < 0.001, RMSE = 0.073 m); however,
the quantification of relationships between parameters and reflectance was limited by
several factors. Match-up windows between satellite imagery and in situ data varied for
each study lake. The closest match-up was on the same day as in situ sampling and the
most distant match-up was 9 days. The longer the time period between the in situ data
collection and the nearest cloud-free satellite image, the greater the likelihood that the water
quality will have changed at the sampling point. This will lead to an underestimation of the
R2 value and an overestimation of the RMSE and MAE values. Additionally, in situ point
sampling data were matched with the 30 by 30 m Landsat pixels in which they fell. The
in situ data provide a good indication of the water quality conditions within the Landsat
pixel; however, the reflectance measured by the Landsat satellites is averaged over the pixel
area [8]. Variations in water quality within the pixel area and the location of the in situ sam-
pling point within the pixel add further uncertainties to model development. Despite these
limitations, good model performance was achieved for the three water quality parameters.

5. Conclusions

In this study, 21 published Landsat band algorithms for water quality retrieval were
evaluated for East African lakes using a dataset of 58 in situ observations from 7 lakes.
Existing published algorithms were compared with newly developed models to identify the
most suitable Landsat water quality retrieval models for East African lakes: for chlorophyll-
a retrieval, the three-band algorithm, parameterised using data for East African lakes,
proved the most suitable (R2 = 0.717, p < 0.001, RMSE = 22.917 µg/L); for TSS retrieval, a
novel index developed in this study, the Modified Suspended Matter Index (MSMI) was
the most accurate (R2 = 0.822, p < 0.001, RMSE = 9.006 mg/L); and for SDD estimation,
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an existing global model was the most accurate (R2 = 0.933, p < 0.001, RMSE = 0.073 m).
Additionally, we developed an easy-to-use Google Earth Engine application (LAQUA) for
applying the retrieval models to a time series of Landsat images to obtain monthly averages
for a chosen waterbody, improving the accessibility of water quality remote sensing for
water quality practitioners in East Africa for the first time. The LAQUA application
provides a valuable resource that water managers can use, without any prior remote sensing
experience, to fill data gaps for lakes that lack regular monitoring, quantify multiple water
quality parameters simultaneously, investigate long-term trends and seasonality using the
multidecadal archive of Landsat satellite imagery, conduct multilake comparisons, explore
spatial gradients within lakes, and provide quantitative evidence to support water resource
management decision making. When combined with other in situ or satellite observations,
the outputs of LAQUA can be applied to a wide range of applications including assessing
the influence of nutrient inputs on harmful algal bloom occurrence and monitoring climate
and land-use change impacts on lake ecosystems. Both the app and the source code are
freely available to the research community, and we envisage this as a continually evolving
resource for those working on remote sensing of African lakes. For example, in future
work, we plan to include additional water quality parameters, such as surface temperature
and turbidity, and additional datasets from other satellite sensors, such as Sentinel-2, to
continue to improve the accessibility of remote sensing for water quality monitoring.
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