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1.  INTRODUCTION 

Patterns of coral reef fish diversity and their drivers 
are increasingly being understood at large spatial 

scales (Parravicini et al. 2013, Pellissier et al. 2014, 
Williams et al. 2015, Ceccarelli et al. 2023). Many 
large-scale approaches are based on compilations 
and mapping of site-based empirical observations. 

© The authors 2024. Open Access under Creative Commons by Attri-
bution Licence. Use, distribution and reproduction are un restricted. 
Authors and original publication must be credited. 

Publisher: Inter-Research · www.int-res.com

*Corresponding author: tmcclanahan@wcs.org

Modeling the spatial distribution of numbers of 
coral reef fish species and community types in the 

Western Indian Ocean faunal province 
T. R. McClanahan1,*, Alan M. Friedlander2,3, Pascale Chabanet4,5,  

J. H. Bruggemann4,5, J. Wickel6, M. K. Azali7 
1Wildlife Conservation Society, Global Marine Programs, Bronx, NY 10460, USA 

2Pristine Seas, National Geographic Society, Washington, DC 20036, USA 
3Hawai’i Institute of Marine Biology, University of Hawai’i, Kaneohe, HI 96744, USA 

4UMR 9220 ENTROPIE, Université de La Réunion, Saint Denis, La Réunion 97400, France 
5Laboratoire d’Excellence CORAIL, Perpignan 66000, France 

6GIE MAREX, Saint Leu, La Réunion 97400, France 
7Wildlife Conservation Society, Kenya Marine Program, Mombasa 80107, Kenya

ABSTRACT: Predicting and mapping coral reef diversity at moderate scales can assist spatial plan-
ning and prioritizing conservation activities. We made coarse-scale (6.25 km2) predictive models 
for numbers of coral reef fish species and community composition starting with a spatially com-
plete database of 70 environmental variables available for 7039 mapped reef cells in the Western 
Indian Ocean. An ensemble model was created from a process of variable elimination and selectiv-
ity to make the best predictions irrespective of human influences. This best model was compared to 
models using preselected variables commonly used to evaluate climate change and human fishing 
and water quality influences. Many variables (~27) contributed to the best number of species and 
community composition models, but local variables of biomass, depth, and retention connectivity 
were dominant predictors. The key human-influenced variables included fish biomass and distance 
to human populations, with weaker associations with sediments and nutrients. Climate-influenced 
variables were generally weaker and included median sea surface temperature (SST) with contrib-
utions in declining order from SST kurtosis, bimodality, excess summer heat, SST skewness, SST 
rate of rise, and coral cover. Community composition variability was best explained by 2 dominant 
community richness axes of damselfishes–angelfishes and butterflyfishes–parrotfishes. Numbers 
of damselfish–angelfish species were ecologically separated by depth, and damselfishes declined 
with increasing depth, median temperature, cumulative excess heat, rate of temperature rise, and 
chronic temperature stresses. Species of butterflyfish–parrotfish separated by median tempera-
ture, and butterflyfish numbers declined with increasing temperature, chronic and acute tempera-
ture variability, and the rate of temperature rise. Several fish diversity hotspots were found in the 
East African Coastal Current Ecoregion centered in Tanzania, followed by Mayotte, southern 
Kenya, and northern Mozambique. If biomass can be maintained, the broad distributions of species 
combined with compensatory community responses should maintain high diversity and ecological 
resilience to climate change and other human stressors.  
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For example, compiled presence/absence observa-
tions of species are used to create polygon distribu-
tion maps that estimate total species diversity (Selig 
et al. 2014, Jenkins & Van Houtan 2016, Bullock et 
al. 2021). Species diversity patterns arising from this 
common method produce distributions based on 
extrapolations across large areas. However, suitable 
environments and habitats may be lacking in the spe-
cies’ ranges created by this extrapolation method. 
Therefore, tests of predictive strength of this extrapo-
lative method have found it weak at locating popula-
tions of the studied species (Lee-Yaw et al. 2022). 
Improved predictions could be made if the habitats 
and environmental conditions that create the species’ 
niches were explicitly modeled across the geogra-
phies of interest. The density and distribution of 
 presence/absence field sampling is also expected to 
influence large-scale diversity maps. Therefore, 
mapped patterns may be very coarse and potentially 
misleading where field sampling is sparse, which 
could adversely influence conservation prioritization 
decisions. Moreover, these and other conservation 
prioritization methods often identify large unspeci-
fied areas, many too large to be contained in the most 
common modest-sized protected areas (EAME 2004, 
Obura et al. 2012, Boonzaier & Pauly 2016). Recently, 
improvements in satellite coverage, environmental 
proxies, and spatial modeling methods are increas-
ingly making finer-scale predictions possible (Pilows -
ky et al. 2022). 

Spatially resolved habitat and environmental infor-
mation has the potential to produce more explicit 
species and community distribution maps (Stephen-
son et al. 2020, Mokany et al. 2022). Increasing sat -
ellite and shipboard measurement availability can 
provide environmental data to explore potential 
 environment–taxa associations (Tyberghein et al. 
2012, Yeager et al. 2017, Assis et al. 2018). Complex 
associational and regression algorithms can then map 
numbers of species and community types at the spa-
tial resolution of the environmental data. Moreover, 
satellite data availability has encouraged the devel-
opment of many single and multivariate proxies. For 
example, there are proxies for thermal stress (Maina 
et al. 2011), human influences (Maire et al. 2016), 
water pollution (Andrello et al. 2022), and larval con-
nectedness (Fontoura et al. 2022) that can be used to 
improve the predictive strength of models. 

An advantage of an environmental modeling ap -
proach is that many of the associated variables are 
expected to reflect species’ niches, thereby produc-
ing more ecologically realistic distribution patterns 
(Pilowsky et al. 2022). The moderate spatial resolu-

tion and wide coverage of these data sources can 
assist in making finer-scale predictions than overlap-
ping species distribution polygons or cumulative spe-
cies rarefaction alternatives. Environmental model-
ing is particularly useful where there is an interest in 
formally protecting biodiversity but where there is a 
history of sparse field sampling, high biodiversity, 
and limited information for prioritization (Parravicini 
et al. 2013, McClanahan et al. 2015, Kusumoto et al. 
2020, UNEP-Nairobi Convention & WIOMSA 2021). 
Emerging predictive modeling tools can be used 
broadly, include many potentially predictive vari-
ables, and may eventually be able to assist global-
scale conservation priorities. 

The spatial scale of biodiversity conservation in 
tropical marine regions is small and limited by trade -
offs between conservation and food needs. For exam-
ple, in Africa and the Western Indian Ocean (WIO), 
human dependence on natural resources and the sub-
sequent unsustainable use of fish is widespread (Zeller 
et al. 2021, McClanahan et al. 2023). Therefore, human 
needs often limit the size and numbers of large-scale 
fully protective management systems. Conservation 
increasingly involves more local jurisdictions, imple-
mentation at smaller scales, and greater access by re-
source users (Cinner et al. 2012, Rocliffe et al. 2014, 
Ban et al. 2023). Knowledge of fish biodiversity at this 
scale is limited and mostly available for specific sam-
pled sites or management systems, such as marine pro-
tected and adjacent fished areas (McClanahan 2019). 
To assist the development of large-scale species diver-
sity modeling, we used  environmental modeling 
methods to predict the number of fish species and 
community composition. Here, satellite, shipboard, 
and multivariate proxies were used to predict numbers 
of reef fish species and community distributions in 
the WIO faunal province for 7039 reef cells mapped at 
a ~6 km2 scale (Burke et al. 2011). 

The research described below was a collaborative ef-
fort to explore environmental relationships with a 
proxy coral reef fish assemblage. Our model made 
predictions based on an empirical census of 5 com-
monly sampled species-rich families previously found 
useful for estimating numbers of species at large scales 
(Allen & Werner 2002). Two metrics of fish biodiversity 
were modeled: number of fish species and community 
composition richness. We fo cused on the potential as-
sociations and responses of these taxonomic metrics 
to relevant oceanographic data and commonly eval-
uated climatic change, water quality, and human re-
source extraction variables. We asked which of the 
many available environmental variables contribute to 
making good predictions and how these predictions 
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compare with those commonly preselected for study-
ing human and climate impacts. Moreover, we used 
spatial clustering methods to identify locations with 
high densities of biodiverse reefs that may benefit 
from conservation efforts. The investigation was un-
dertaken to better understand fish–environment asso-
ciations and the specific strengths of climate change, 
water quality, and human-use variable relationships. 

2.  MATERIALS AND METHODS 

The study builds on several methodological ad -
vances that have made it possible to evaluate biogeo-
graphic patterns of reef fishes in the WIO. These in -
clude: (1) moderate-resolution mapping of coral 
reefs, (2) global satellite coverage of environmental 
variables that are potential proxies for biodiversity, 
(3) increased scale of field data collection and col-
laboration, and (4) machine learning algorithms 
capable of evaluating and calculating partial effects 
that allow making fair comparisons when evaluating 
numerous variables and locations. These 4 emergent 
tools allowed us to evaluate and map our proxy of 
numbers of fish species in the WIO coral reefs. 

2.1.  Study region 

We used recent iterations of coral reef maps to 
establish reef distribution patterns (https://data.
unep-wcmc.org/datasets/1) (Burke et al. 2011). Spe-
cifically, we used the map of the WIO composed of 
~7039 cells (each 6.25 km2) distributed among 9 
ecoregions, namely the Northern Monsoon Current 
Coast, East African Coral Coast, Seychelles, Carga-
dos Carajos/Tromelin Island, Mascarene Islands, 
Southeast Madagascar, Western and Northern Mad-
agascar, Bight of Sofala/Swamp Coast, and Delagoa. 
Empirical data were only available for 6 of the more 
accessible ecoregions, but we used the model from 
these data to predict values in the 3 unsampled 
ecoregions. Therefore, predictions for Cargados 
Carajos/Tromelin Island, Southeast Madagascar, 
and Bight of Sofala/Swamp Coast should be seen 
as unconfirmed but testable predictions. The WIO 
faunal province also includes 9 national govern-
ance jurisdictions, with Madagascar, Tanzania, and 
Mozambique having the most coral reefs cells (43%) 
(Text S1, Fig. S1 in the Supplement at www.int-res.
com/articles/suppl/m730p059_supp.pdf). The scale 
of this map aligns well with the scale of the environ-
mental data described below. 

2.2.  Environmental data sources 

Environmental data compilations accessed several 
sources from satellite and shipboard measurements 
and multivariate compilations (Table 1, Table S1). 
Environmental oceanographic layers included those 
expected to influence marine organisms, such as 
wave energy, photosynthetic active radiation (PAR), 
light diffusion attenuation, pH, calcite, dissolved 
oxygen, salinity, net primary productivity, chloro-
phyll a, and phytoplankton carbon (Tyberghein et al. 
2012, Yeager et al. 2017). Additionally, several water 
temperature or thermal stress metrics were used, 
including sea surface temperature (SST) mean, 
median, range, standard deviation, skewness, kurto-
sis, and rate of rise, as well as cumulative degree-
heating weeks (DHW) (https://coralreefwatch.noaa.
gov/product/5km/index_5km_sst.php). Kurtosis and 
skewness are metrics that reflect chronic and acute 
stress on marine organisms and, along with tem-
perature ranges and standard deviations, have been 
shown to influence coral cover, loss of coral sym-
bionts, and other coral reef community metrics 
(Ateweberhan & McClanahan 2010, Safaie et al. 2018, 
McClanahan 2020). Water chemistry metrics of dis-
solved oxygen, salinity, pH, and calcite concentra-
tions are expected to reflect conditions known to 
affect fish health and distributions (Gallo et al. 2020, 
Pinheiro et al. 2021). Two multivariate integrated 
metrics of thermal stress and water quality were in -
cluded (Maina et al. 2011, Andrello et al. 2022). Hab-
itats were assigned to grid cells based on the most 
common habitat observed in each cell from satellite 
image observations. Finally, for each cell, we used 
several layers that measure connectivity, including 
average net flow, indegree, outdegree, and retention 
metrics that are expected to influence numbers of 
species (Fontoura et al. 2022). Fish census observers 
also recorded local site metrics including depth and 
habitats, recorded as reef edge, reef crest, reef flat, or 
reef lagoon. Field-based habitat classifications were 
used to build the model, but predictions were based 
on the dominant habitat type in each cell. 

Several geographic variables were retained inde-
pendently of the larger and objective variable selection 
process to evaluate a common practice of preselecting 
variables of human and climate change concern. 
Human-influenced variables included were nation, 
wilderness (>4 h travel time from a human popula-
tion), and travel distance to either people living on 
coastlines or in cities. These are referred to as gravity 
to a coastal population and city or the number of 
people living on the nearest shore or cities divided by 
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Variable                                                         Ecological importance                     Number of fish            Community axis 1                  Community axis 2 
                                                                                                                                                 species         (Pomacentridae–Pomacanthidae)  (Chaetodontidae–Scarinae) 
                                                                                                                                                  Model 1    Model 2                    Model 1     Model 2                            Model 1     Model 2 
 
Total fish biomass (kg ha–1)                     Fish community health status                    42.6            42.7                            17.1               17                                      17.4              16.4 
SST median (°C)                                          Productivity and metabolism                     10.1                                                 2.8                                                            3.3                    
Travel time to nearest                               Coastal fishing pressure                               7.5                                                   1.3                                                            3.7                    
 human population (h) 
Retention connectivity                             Net fish recruitment                                       5.7               6.1                              1.1                1.1                                       4.1                4.2 
SST kurtosis                                                 Chronic temperature stress                         4.2                                                   8.4                                                            2.9                    
Net primary productivity                        Food production                                               3                                                    4.4                                                            2.8                    
 (mg C m–2 d–1) 
Depth (m)                                                      Behavioral and escape from                        2.7               3.1                             14.1              14.6                                      3.8                3.5 
                                                                          fishing effects 
Observers                                                      Potential human or methods bias               2.6               4.3                              1.5                1.5                                       6.3                6.1 
Travel time to market (h)                          Proxy of fishing pressure                              2.5                                                   1.4                                                            2.7                    
Maximum photosynthetically                       Energy availability                                          2.4               3.2                              1.6                1.5                                       5.2                4.1 
 active radiation (E m–2 d–1) 
Median chlorophyll a (mg m–3)             Food availability                                              2.1                                                   2.8                                                            5.7                    
Salinity (PSS)                                               Environmental chemistry conditions        1.9               1.7                              4.3                3.9                                        6                  5.4 
Cumulative DHW (°C-weeks)                 Excess heat stress                                           1.6                                                   2.1                                                            3.4                    
SST rate of rise (°C yr–1)                           Speed of climate change                               1.5               1.4                             19.8               8.8                                       3.3                3.2 
Mean wave energy (kW m–1)                  Disturbance and production                        1.5               1.2                              1.9                1.7                                       2.7                2.8 
Reef visitation value                                  Environmental aesthetic                               1.5               1.2                              0.7                0.6                                       3.9                3.4 
 (number of tourist visits) 
Hard coral cover (%)                                  Refuge from predation                                    1                 1.5                              3.5                3.1                                       1.7                1.4 
Indegree connectivity                               Input of recruits                                               0.9               1.5                              1.5                1.6                                       1.6                1.6 
Nutrients (nitrogen, t km–2)                    Resource input                                                 0.9                                                   0.9                                                            0.9                    
Ecoregion                                                      Biogeographical history                               0.7               0.9                              0.2                0.2                                       0.1                0.1 
Habitat                                                           Species preferences                                       0.6               0.8                              1.3                1.3                                       2.7                2.8 
Dissolved oxygen (ml l–1)                        Metabolism influence                                    0.6               0.7                                1                  0.9                                       2.5                  2 
Net flow connectivity                                Recruitment retention metric                      0.5               0.8                              1.8                1.9                                       1.3                1.4 
Calcite concentration (mol m–3)            Environmental chemistry conditions        0.5               0.8                                2                  2.2                                       6.9                6.1 
Management                                                Fisheries impact                                              0.5               0.5                              1.5                1.4                                       1.6                1.6 
Outdegree connectivity                           Loss of recruits                                                 0.4               0.6                              1.1                  1                                         3.5                2.5 
pH                                                                   Environmental chemistry conditions                            6.6                                                     1                                                              1.7 
Gravity to nearest population:               Coastal fishing population pressure                              5.0                                                    1.3                                                            5.4 
 population/(c + travel time (h)2) 
SST skewness                                               Acute temperature stress                                                  4.8                                                    2.1                                                            5.6 
Current velocity (m s–1)                            Disturbance and productivity                                          3.1                                                    1.8                                                            3.4 
Diffuse attenuation coefficient (m–1)   Available energy                                                                   3                                                     2.4                                                              3 
SST bimodality                                            Temperature stress                                                              2.7                                                   10.8                                                           3.9 
Climate stress model                                 Thermal stress                                                                      1.1                                                    2.9                                                            3.2 
Sediments (t km–2)                                     Visibility and productivity                                                  1                                                     1.6                                                            2.6 
Gravity to nearest city:                             Fisheries market influence                                                 1                                                     1.7                                                            2.6 
 population/(c + travel time (h)2)

Table 1. Statistical results of the boosted regression tree ranking of variables by their relative influence on (% contribution to) the 3 response variables, i.e. number of fish 
species, canonical correspondence analysis (CCA) axis 1 (fewer Pomacentridae and more Pomacanthidae species) and CCA axis 2 (fewer Chaetodontidae and more 
Scarinae species), for the 2 models with alternative sets of variables. Blank cells indicate the variable was not used in the specific model. See Table S1 in the Supplement 
for all variables, further explanations, and their sources. Variable order from most to least important is based on relative importance in predicting the number of species.  

SST: sea surface temperature; DHW: degree-heating week; PSS: practical salinity scale
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a constant plus the square of the distance or travel 
time (Maire et al. 2016). Population and city gravity 
metrics were log transformed to better visualize pat-
terns. The ecoregion was also evaluated as a potential 
variable but had low predictive strength. Mapped reef 
cells were assigned 4 fisheries management categories 
comprised of unrestricted fishing (42%), re stricted 
fishing (42%), low compliance closures (14%), and 
high compliance closures (2%). These classifications 
were based on information in published literature, the 
experience of the data providers, and discussions with 
knowledgeable observers (McClanahan et al. 2015). 

2.3.  Field data collection 

Experienced observers counted fishes in designated 
areas using either circular or belt transect methods of 
100, 154, 250, or 500 m2 described in the authors’ foun-
dational methods papers (McClanahan 1994, Fried-
lander et al. 2014, Chabanet et al. 2016, Graham et al. 
2020). Smaller replicates conducted close to each 
other were pooled such that the final units were 
number of species per ~ 250, 300, 462, and 500 m2. Con-
sequently, we evaluated several stra tegies to account 
for the differences in sampling units, including the 
sampled area and using only samples with a similar 
transect area (Text S2, Figs. S2 & S3). Differences in 
the 5 tested models were small, but we present results 
from samples collected at 500 m2 using the boosted re-
gression tree (BRT) regressions and multivariate an -
alysis of similarity (ANOSIM) of species composition. 

We used the number of species from 5 families sam-
pled by all observers (Acanthuridae (surgeonfish), 
Chaetodontidae (butterflyfish), Labridae (wrasses)–
Scarinae (parrotfish), Pomacanthidae (angelfish), and 
Pomacentridae (damselfish)), which are known to be 
good proxies for the total numbers of species in regions 
(Allen & Werner 2002). We separated the herbivorous 
Scarinae from the other carnivorous Labridae species 
in our analysis be cause their feeding and ecological 
differences affected the community composition anal-
yses. Each observer independently estimated total fish 
biomass based on the sum of the weights of all individ-
uals. Biomasses were calculated from length estimates 
and known length–weight relationships compiled at 
either the species or family level as per the observers’ 
methods. A total of 1201 transects were sampled and 
967 500 m2 used in the final evaluation. Transects were 
surveyed throughout most of the countries and ecore-
gions in the WIO province between 1991 and 2022, 
and the environmental data used for analysis corre-
sponded to the time just prior to field sampling (Fig. S1). 

2.4.  Data analyses 

2.4.1.  Species community composition analysis 

To distinguish coral reef fish community distribu-
tions in the province, standard ecological multivariate 
ordination was conducted. We used the canonical cor-
respondence analysis (CCA) method to evaluate the 
distribution of species within the 5 families for their as-
sociations with the above environmental variables. We 
further evaluated the species dissimilarity between 
ecoregions by a pairwise 1-way ANOSIM using Bray-
Curtis distances. Statistical significance was assessed 
with the Bonferroni correction for multiple testing. 
Similarity percentages (SIMPER) procedures were per-
formed to evaluate fish families that contributed the 
most to the average dissimilarity between ecoregions. 
Similarities were calculated as 1 – overall average dis-
similarity between ecoregion pairs (Text S3, Table S2). 
One-way ANOSIM results indicated an overall signifi-
cant difference in the per family number of species 
among ecoregions (ANOSIM R = 0.11, p = 0.0001), 
while pooled SIMPER analyses indicated an overall 
high species similarity of 86% among ecoregions. 

2.4.2.  Estimated number of species 

The number of species was estimated by several 
methods prior to selecting a final or best model for 
presentation. Historically, rarefaction methods have 
been used to account for variable species–area rela-
tionships (Gotelli & Colwell 2001). However, BRT ma-
chine learning algorithms are an alternative that 
might uncover associational rather than pre-selected 
equations for the species–area responses. BRT pre-
dictions can control for differences in sampled area 
and other sampling or environmental factors simulta-
neously, whereas rarefaction assumes an underlying 
equation or model structure. Therefore, prior to se-
lecting outputs for presentation, we evaluated 7 po-
tential models to evaluate numbers of species: 2 were 
based on rarefaction methods and 5 on the machine 
learning or BRT methods (Text S2). This evaluation 
was undertaken to account for the effects of observer 
and sampled area in the BRT model described below. 
Evaluations with and without country or national  
jurisdiction were included to evaluate this ‘dummy’ 
or  non-environmental variable effect in potentially 
obfuscating underlying patterns of diversity. Com -
parison of these 7 methods indicate that rarefaction 
methods produced weaker fits (r2 = 0.60) than the 
BRT  method (r2 = 0.79 to 0.85) (Figs. S2 & S3). Ad-
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ditionally, national jurisdiction, a non- environmental 
variable, was the top variable in the rarefaction ap-
proach. This suggests some weaknesses in rarefaction 
methods. Rarefaction does not account for the partial 
effects of important environmental variables and ef-
fects that may arise from different observers and 
methods. The 5 BRT methods produced similar results 
in their number of species prediction and top 
variables. The chosen BRT variables were also those 
expected by ecological theory, such as biomass, 
depth, connectivity, and temperature. We therefore 
present the results from the BRT model based on sam-
ples collected at 500 m2. 

2.4.3.  Environmental association analyses 

The BRT analyses evaluated associations between 
the response variables of numbers of taxa and species 
community axis 1 and 2 from the multivariate species 
ordination analyses (Text S4). The number of vari-
ables evaluated went through a process of variable 
elimination to reduce redundancy. Furthermore, a 
final ensemble model was created to avoid elimi-
nating potentially causative variables (Text S5, 
Fig.  S4). The structure of BRT models ensures they 
are robust to autocorrelation. Nevertheless, variable 
selection processes can complicate the interpretation 
and fail to identify potential causative variables 
(Pilowsky et al. 2022). For example, it is possible that 
a potentially causative variable could be eliminated 
by a small improvement in predictions by a stronger 
correlational variable. Therefore, we developed en -
semble forecast models based on 2 sets of variables as 
recommended by Araújo & New (2007). Both models 
in cluded all potentially strong causative variables, 
but the second model included some correlated vari-
ables eliminated in the first model suspected of 
causative environmental stress relationships (i.e. SST 
mean, SD, and skewness) (Table 1). By this method, 
our number of fish species proxy for each cell was 
the  average of the 2 models weighted by their ex -
plained deviance. The elimination process reduced 
the number of variables from 70 to 35 via analysis of 
redundancy. Of these 35 variables, 26 were used in 
BRT Model 1 while 27 were used in Model 2. Further, 
11 variables were maintained because they were met-
rics commonly used to study human influences of 
water quality and fishing impacts. Nine variables 
were also retained because they were commonly used 
to evaluate climatic change. This selective variable 
retention process was undertaken to compare the 
strength of associations and response relationships of 

frequently preselected variables relative to a more 
objective variable selection process. 

Model performances were evaluated using the sta-
tistical guidelines of randomly splitting the data into a 
70% training set and 30% testing set and calculating 
the Theil’s U-statistic, percent deviance explained 
(analogous to R2), and Pearson’s correlation coeffi-
cients presented in Table S3 (Kuhn & Johnson 2013). 
To make fair comparisons of the BRT predictions for 
each cell, we held fish biomass (600 kg ha–1), coral 
cover (30%), and sampled area (500 m2) constant for 
the final analysis and mapping. 

2.4.4.  Hotspot predictions 

We searched for locations where groups of reefs 
with high and low diversity exist using an optimized 
hotspot analysis. We used the Getis-Ord Gi* statistic 
to identify statistically significant spatial clusters with 
high (hotspots) or low numbers of species (coldspots) 
within a defined neighborhood distance (ESRI 2022a). 
The method used z-scores of the predicted number of 
fish species and p-values corrected for false discovery 
rates potentially arising from spatial dependence and 
multiple testing (Ord & Getis 1995). Specifically, a 
high positive z-score with a low p-value (p < 0.10) indi-
cated a hotspot, a low negative z-score with a low p-
value indicated a cold spot, and a score near zero indi-
cated a lack of spatial clustering (Ord & Getis 2001). 
The optimized hotspot analysis can use several stra -
tegies to determine the optimum parameter settings for 
the analysis, including the neighborhood distance for 
clustering. The peak incremental spatial autocorrela-
tion, and the average distance to 30 nearest neighbors 
were among the strategies evaluated (ESRI 2022b). No 
peaks of spatial autocorrelation were identified in the 
predicted number of fish species. Therefore, a neigh-
borhood distance of ~25.5 km based on the average 
distance to the nearest 30 neighbors was used. 

3.  RESULTS 

Below are the results of (1) observed site and eco -
regional number of species and composition analyses, 
(2) local site-, climate-, and human-influenced vari-
able associations with number of species and commu-
nity composition richness, and (3) predicted number 
of species and hotspots by ecoregions and nations. 
Pearson’s correlation for the 30% testing of the models 
was 0.80 for both Model 1 and Model 2 (Text S6). For 
the full data, the correlation was 0.89. 
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3.1.  Site and ecoregional analysis of 
empirical data 

Species composition of the empirical 
data was similar (81–89%) among eco -
regions when comparing sampled sites 
(Table S2). The most similar and most 
central ecoregions in this province 
were the well sampled East African 
Coral Coast and the Western and 
Northern Madagascar ecoregions. The 
peripheral Mascarene Islands were the 
least similar to these 2 core ecoregions. 
The modestly sampled Delagoa was 
least similar to the Mascarene Islands, 
but not different from other ecore-
gions. Individual fish families contrib-
uted between 15 and 18% to the overall 
ecoregional dissimilarities. Pomacan-
thidae, Pomacentridae, carnivorous 
Labri dae, and herbivorous Scarinae 
had the highest contribution, while 
Acan thuridae and Chaetodontidae had 
the lowest overall contribution to eco -
regional dissimilarities. 

The unconstrained CCA of the ob -
served number of species per family 
separated sites by the 6 taxonomic 
groupings shown in Fig. 1. The East 
African Coral Coast and Western and 
Northern Madagascar ecoregions 
were most similar and therefore the 
most centrally located ecoregions in 
the CCA plot. While there were few 
samples from the Monsoon Coast of 
northern Kenya, they were associated 
with higher relative numbers of Scari-
nae. Madagascar had lower concor-
dance among sites, suggesting high 
spatial variation. The Mascarene Is -
lands were associated with higher rel-
ative numbers of Pomacentridae spe-
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cies and thus distributed furthest left on the first CCA 
axis. In contrast, the Delagoa ecoregion was distrib-
uted to the right side of this axis, having greater 
numbers of Pomacanthidae species. Therefore, sites 
adjacent to the Coral Coast were most similar with a 
strong band of similarity extending seaward from 
Tanzania to wards northwestern Madagascar. 

The Acanthuridae and carnivorous Labridae spe-
cies were the most centrally located families. The first 
CCA axis separated sites by the numbers of Pomacen-
tridae and Pomacanthidae. The second CCA axis sep-
arated sites by the numbers of Chaetodontidae and 
Scarinae. Therefore, positive values on axis 1 indi-
cated more species of Pomacanthidae and fewer 
Pomacentridae and for axis 2 more Scarinae and fewer 
Chaetodontidae. 

Numbers of species and the community axes sep-
arations were associated with climate- and human-
influenced variables (Fig. 2). Biomass was the most 
influential variable, and total, Pomacanthidae, and 
Scarinae species numbers increased with biomass 
(Fig. 3). These patterns were reflected in the fisheries 
management associations, with numbers of Poma -
canthidae and Scarinae species highest in high-
compliance fisheries closures; Pomacentridae species 
numbers were highest in restricted fishing and low-
compliance closures, and Chaetodontidae were high-
est in fished sites. 

3.2.  Local site- and human-influenced variable 
associations 

Predictive strengths of numbers of species and com-
munity composition indicated the importance of the 
common variables of biomass; depth; SST kurtosis, 
bimodality, skewness, median, and rate of rise; and 
coral cover (Table 1). Therefore, these variables were 
included when evaluating models that retained cli-
mate (i.e. DHW) and human impact (i.e. travel time 
and nutrients) variables (Fig. 2). The human-
influenced model had stronger predictive variables 
than the climate model, especially given that bio-
mass, the strongest variable, was largely associated 
with fishing impacts. The top non-biomass variables 
were gravity to people and sediments, with lesser 
importance of travel time to cities and people, city 
gravity, nutrients, reef tourism value, and fisheries 
management (Fig. 2b). 

In the climate model, after accounting for the 
strong partial effect of biomass, the number of species 
were best predicted by the median SST and kurtosis 
with lesser importance of bimodality, cumulative 

DHW, SST skewness, rate of SST rise, and coral cover 
(Fig. 2a). Therefore, DHW and coral cover were mod-
erate to weak predictors of numbers of species rel-
ative to the SST background variables. These vari-
ables were also largely selected as important for the 2 
community axes, but their relative importance and 
response relationships varied (Fig. 2c–f). 

The Pomacentridae–Pomacanthidae species axis 1 
gradient indicated that sediment was the only 
human-influenced variable with >10% importance. 
Weaker variables included city gravity, travel time 
to markets, fisheries management, nutrients, travel 
time and gravity to coastal population, and tourism 
value. For the climate model, the SST rate of rise and 
bimodality had >10% relative importance. Weaker 
variables included coral cover, SST kurtosis, median, 
and skewness, and cumulative DHW. The Chaeto-
dontidae–Scarinae species axis 2 gradient indicated 
human-influenced variables of population and city 
gravity and sediments had >10% relative impor-
tance. Weaker variables included nutrients, tourism 
value, travel time to markets and coastal population, 
and fisheries management. For the climate model, 
SST skewness and rate of rise had >10% relative 
importance. Weaker variables included cumulative 
DHW, SST bimodality, median, and kurtosis, and 
coral cover. Numbers of species of Pomacanthi-
dae,  Pomacentridae, Chaetodontidae, and Scarinae 
were either negatively or not correlated, which ex -
plains  some of the compensatory patterns (Text S7, 
Fig. S5). 

3.3.  Boosted regression tree associations 

Numbers of species and composition responses for 
human and climate variables often showed similar 
relationships with key environmental variables, but 
they were sometimes reversed when evaluated for 
community composition (Figs. 3 & 4). After account-
ing for biomass, patterns with depth indicated vari-
able responses, being unimodal for total number of 
species, positive and saturating for the Pomacentri-
dae–Pomacanthidae axis, and more sinusoidal for the 
Chaetodontidae–Scarinae axis. Coral cover was a 
weak variable, but total numbers of species increased 
with coral cover up to the maximum at 60% cover. 
However, the 2 community axes were more variable, 
with the Pomacanthidae species having peaks and 
troughs but a steep decline at >50% cover. The 
numbers of species in the Scarinae community dis-
played a u-shaped distribution, with their lowest 
numbers at ~40% cover. 
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3.4.  Response associations with  
human-influenced variables 

Fisheries management partial effects were weak 
and displayed minor differences for numbers of spe-
cies with management (Fig. 4). This suggests that 
biomass was the stronger driver of number of species 
rather than the specific management restrictions or 
their selection of sites. However, the species commu-
nity axes responses varied with restrictions and sug-
gest more Pomcanthidae and Scarinae species in the 
stricter fisheries restriction categories. After biomass, 
the log gravity to coastal people had the strongest 
effect on numbers of species. Numbers of species of 
Pomacanthidae increased while Scarinae numbers 
declined with gravity to people. Gravity to cities was 
weaker and showed more complex responses but 
also an overall decline with number of species and 
more u- and hump-shaped patterns for the Pomcan-
thidae and Scarinae communities, respectively. Sed-
imentation showed a peak in total numbers of spe-
cies at low sediment levels and more tolerance to 
sediments among the Pomacanthidae community. 
The Scarinae community had a u-shaped response to 
high sediments, with a peak at very low levels and 
modest tolerance among some species. Partial effects 
of travel time to cities indicated high numbers of all 
species and of Pomacanthidae species at short travel 
times. Scarinae numbers had 2 peaks, one at a short 
time and another at ~5 h. Travel time to humans 
showed similarly high numbers at short times but the 
numbers of Pomacanthidae and Scarinae declined 
with increasing times. The biomass, gravity, and 
travel time results combined suggest high potential 
numbers of species close to shore but that human 
resource extraction and biomass reduction overrides 
this pattern. All 3 species responses showed 
increases and tolerance to high nutrient concentra-
tions. Increasing reef tourism value was associated 
with higher numbers of species but declining Poma-
canthidae numbers and a u-shaped relationship with 
the Scarinae numbers. 

3.5.  Response associations with climatic variables 

Complex species relationships were found among 
the 8 retained climate variables that suggest multiple 
climatic influences on species predictions (Fig. 3). 
Median SST, for example, indicated that the Poma-
canthidae-associated numbers of species declined 
above 28°C whereas Scarinae numbers increased for 
temperatures between 26 and 27.5°C, with some de -

clines above 27.5°C. The kurtosis metric indicates the 
benefits of centrally distributed temperatures for all 3 
species groups, or losses of Pomacentridae- and 
Chaetodontidae-associated species with chronic tem-
perature stress (i.e. negative kurtosis). When bimo-
dality was detectable (i.e. >0.55), the number Poma-
canthidae species declined, but the Scarinae had a 
window where their numbers peaked with modest 
bimodality. Some modest positive skewness (~0.1) 
was positively associated with numbers of species. 
Yet, different patterns were found for the Pomacanthi-
dae and Scarinae numbers: more hump-shaped for the 
Pomacanthidae and u-shaped for Scarinae. Partial ef -
fects of increasing cumulative DHW were associated 
with more species of Pomacanthidae and Scarinae 
until abrupt declines were observed at 45 and 
70 DHW, respectively. Rapid rates of SST rise were 
associated with declining numbers of Pomacanthi-
dae-associated species, whereas the numbers of Scar-
inae peaked at ~0.02°C increase per year. 

3.6.  Regional and hotspot predictions 

The predicted number of proxy species for all reef 
cells per 500 m2 indicated the highest numbers of spe-
cies in the East African Coral Coast at 42.6 ± 3.0 (SD) 
and the lowest in the Mascarene Islands at 28.2 ± 2.2 
(Table 2, Fig. 5a). Tanzania was the overall highest 
ranked nation (43.1 ± 2.4) followed by Mayotte 
(France) and Mozambique. Madagascar had the most 
reef cells (n = 2282) but was ranked ninth for numbers 
of species as a nation. The western and Northern 
Madagascar ecoregion was ranked fourth, but the 
total numbers of species was reduced by the seventh 
ranked Southeast Madagascar ecoregion. Mozam-
bique had 3 ecoregions, and they ranked first, third, 
and fifth to produce a high overall national ranking. 
The French Southern Territories and Comoros Islands 
ranked fourth and fifth in terms of numbers of species 
but with a low number of reefs cells (n = 376). Kenya 
also had about the same number of reefs cells, but 
its 2 ecoregions ranked first and sixth, which results 
in a seventh overall ranking for all cells combined. 
Seychelles ranked second at the ecoregion level but 
fifth as a nation. The more peripheral countries of 
South Africa, Mauritius, and Reunion were ranked 
eighth, tenth, and eleventh, respectively. Therefore, 
the combined countries of Tanzania and Mozambique 
had the largest reef areas and highest numbers of 
local  species. 

Many of the highest-density provincial clusters of 
species were restricted to the African coastline and 
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located in the Coral Coast ecoregion (Fig. 5b). These 
included a cluster on the Kenya–Tanzania border 
that extended south to include several high-density 
reef areas in northern Mozambique. The Western 
and Northern Madagascar ecoregion and the nation 
of Madagascar were notable for lacking diversity 
hotspots despite having high numbers of species per 
cell. Here, hotspots were limited to a longitudinal 
band stretching from the Comoros and Mayotte 
Islands to the Ankivonjy area in NW Madagascar. 
This resulted from the sparsity of dense neighbor-
hoods of specious cells, which was also ob served in 
other island nations. 

4.  DISCUSSION 

Patterns in the numbers of fish spe-
cies and community composition were 
predicted for 7039 modest-sized reef 
cells in the Western Indian Ocean 
Province. In general, the highest 
numbers of species were predicted to 
occur where there was high biomass 
(>500 kg ha–1), high coral cover 
(>50%), slow rates of SST rise, low 
gravity or impact with people, a narrow 
range of nutrients and sediments, mod-
erate depths (5–12 m), and median 
SSTs (27–28°C). Human im pacts were 
more influential than climate impacts, 
particularly considering the central 
importance of biomass. This diversity 
exists in the presence of many tem-
perature-modifying factors, including 
some bimodality, positive skewness, 
and cumulative excess heat. The com-
munity richness of the studied fish 
families was not positively related. 
Therefore, variations in biomass and 
environmental factors cause shifts in 
species composition to partially com-
pensate and maintain high levels of 
total diversity. Weak or negative corre-
lations between Pomacentridae and 
Pomacanthidae and Scarinae and 
Chaetodontidae species numbers were 
responsible for this species compensa-
tion. Species niches and several envi-
ronmental changes were often mod-
ified by biomass and depth, indicating 
the important roles of the taxa’s life 
histories for community change and 
adaptation. 

4.1.  Provincial patterns 

The highest numbers of fish species occurred 
along the continental band of the East African Coral 
Coast that included southern Kenya, Tanzania, and 
northern Mozambique. Both the numbers of species 
proxy and high-density clusters of reefs were high. 
Consequently, the top 5–10% of species richness 
cells largely indicated a single ecoregion with a few 
ad ditional locations in northwest Madagascar, May-
otte, Comoros, southern Kenya, and Seychelles. The 
eco regions to the north on the African continent, or 
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                                                                          Proxy for predicted           Number of  
                                                                           number of species              reef cells 
 
Province 
Western Indian Ocean province                       38.6 (5.3)                           7039 
Ecoregion                                                                                                                  
East African Coral Coast                                     42.6 (3.0)                           2743 
Seychelles                                                                39.2 (4.0)                            701 
Bight of Sofala/Swamp Coast                            38.7 (1.8)                            113 
Western and Northern Madagascar                36.2 (4.9)                           2854 
Delagoa                                                                    35.5 (1.5)                             96 
Northern Monsoon Current Coast                  34.9 (1.4)                            130 
Southeast Madagascar                                        32.6 (3.9)                             65 
Cargados Carajos/Tromelin Island                 31.8 (2.9)                            141 
Mascarene Islands                                                28.2 (2.2)                            196 
Nation                                                                                                                        
Tanzania                                                                   43.1 (2.4)                           1524 
Mayotte                                                                    41.9 (2.8)                            269 
Mozambique                                                           41.8 (3.5)                           1180 
Comoros                                                                   40.3 (2.4)                            238 
French Southern Territories                              40.2 (4.2)                            138 
Seychelles                                                                39.2 (4.0)                            701 
Kenya                                                                        37.1 (3.0)                            372 
South Africa                                                            36.3 (1.0)                              6 
Madagascar                                                             34.7 (4.4)                           2282 
Reunion                                                                    27.6 (3.1)                             25 
Mauritius                                                                 29.5 (3.1)                            304 
Species hot- and coldspots                                                                                  
Hotspot 99% confidence                                     43.0 (2.5)                           3136 
Hotspot 95% confidence                                     40.9 (2.1)                            255 
Hotspot 90% confidence                                     40.2 (1.9)                            177 
Average hotspots                                                   42.3 (2.5)                           3568 
Not significant                                                       38.7 (2.1)                            965 
Coldspot 90% confidence                                   36.7 (1.7)                             71 
Coldspot 95% confidence                                   36.2 (2.3)                            189 
Coldspot 99% confidence                                   32.4 (3.3)                           2246 
Average coldspots                                                 32.8 (3.4)                           2506

Table 2. Predicted numbers of species per ~500 m2 for the 6 studied families 
(mean, SD) by province, ecoregion, nation, and high and low number of species 
cluster locations. Number of cells are those that fall within the categories of prov-
ince, ecoregion, nation, and hotspot classifications. See Fig. 5a for distributions  

at the cell level and Fig. 5b for distribution of hot- and coldspots
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Fig. 5. Regional maps of the predicted numbers of (a) local fish species and (b) location of hot- and coldspots for species numbers based on the 6 proxy families

Figure continues on next page
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the Monsoon Coast, and south, or Bight of Sofala 
and Delagoa ecoregions, had high numbers of spe-
cies and high similarities with the Coral Coast. Pre-
vious studies have identified some of these areas, 
such as the Lamu Archipelago, Pemba Channel, 
Tanga-Pangani, Mafia-Ruvuma, Mtwara-Quirimbas, 
and Bazaruto-Tofo, as seascapes of high or unique 
biodiversity for conservation efforts (van der Elst & 
Everett 2015). However, the attributes used to select 
these conservation priorities were charismatic and 
visible species, including nesting turtles and birds, 
coelacanths, and marine mammals. 

The Western and Northern Madagascar ecoregion 
and the islands of Comoros, Mayotte, and French 
Southern Territories represent an off-continent ex -
tension of this continental diversity. This appears to 
create a stepping-stone of islands of diversity and 
similarity extending to northwest Madagascar (i.e. 
Mitsio Islands). The ecoregions furthest from the con-
tinent or the Mascarene and Cargados Carajos 
Islands and Southeast Madagascar appeared to be a 
peripheral fauna, as evidenced by lower numbers of 
species and lower similarity with the central eco -
regions on the African continent. The Mascarene 
Islands are known for their isolation and high levels of 
endemism, particularly among the Pomacentridae 
(Roberts et al. 2003). In the well-sampled Reunion 
Island, for example, 2.6% of species recorded were 
endemic, and Mauritius also has several island-spe-
cific and ecoregional endemics (Fricke et al. 2009, 
McClanahan et al. 2022). Predictions for the 3 unsam-
pled ecoregions (Cargados Carajos/Tromelin Island, 
Southeast Madagascar, and Bight of Sofala/Swamp 
Coast) should be seen as provisional estimates until 
field sampling is conducted. 

Previous studies using rarefaction methods for 
coral taxa identified the northern Mozambique Chan-
nel for high within- and between-site diversity (Obura 
et al. 2012, Ateweberhan & McClanahan 2016). This 
result is confirmed here for fish species, but more spe-
cies were predicted in the northern than the southern 
Mozambique Channel (Chabanet et al. 2016), notably 
in Mayotte, where 759 marine fish species have been 
recorded for a small volcanic island (Wickel et al. 
2014). Regional currents that transport larvae have 
been shown to facilitate inter-reef connectivity in 
the north (Crochelet et al. 2016, Maina et al. 2020). 
Previous predictions for fish have been at a coarse 
scale and not clearly associated with environmental 
conditions (Jenkins & Van Houtan 2016, Bullock et al. 
2021). Some patterns here suggest that environmen-
tal factors are more important than ecoregion, bio-
geographic distance, size, and connectivity metrics. 

Therefore, failure to use finer-scale environmental 
information is expected to produce coarse and impre-
cise biodiversity and regionalization mapping. For 
example, there was a high overall ANOSIM similarity 
between the Mascarene Islands and Delagoa, despite 
their large distance apart and locations on the oppo-
site sides of Madagascar. Therefore, environmental 
conditions may be more important for faunal similar-
ity than distance and connectivity metrics. 

4.2.  Human-influenced variables 

Biomass, which is largely expected to represent 
fishing pressure, was the single overriding predictor 
of numbers of species and taxonomic composition. 
The other evaluated variables, such as distance to 
people, travel times, water quality, tourism economic 
value, and management, had lesser predictive in -
fluence. Studies of the distribution of biomass and 
environmental factors in this province have found 
that depth, distance to deep water, travel time, man-
agement, nation, SST metrics, reef area, and net pri-
mary productivity are the major predictors of biomass 
(McClanahan et al. 2016, 2023, McClanahan 2019). 
However, biomass is accounted for or normalized 
here by holding it constant and using partial effect 
methods when making the broader distributional pre-
dictions and comparisons of numbers of species and 
community structure. Overall, managing biomass is 
likely to be one of the most effective approaches to 
protect fish biodiversity regardless of the specific 
means to accomplish it. Methods to manage biomass 
are likely to vary with the social and governance 
aspects of the jurisdictions and various aspects of cul-
ture, the fisheries management authority, and human 
dependence on fish resources (McClanahan & 
Abunge 2016). The travel time partial effect patterns 
suggest that in the absence of human pressures, the 
highest diversity would be located close to shore. 

4.3.  Climate-influenced variables 

After accounting for biomass and depth, the stron-
gest climate predictors of our species proxy were 
median SST and metrics of SST variability (kurtosis, 
bimodality, cumulative excess heat, skewness, and 
rate of rise). These variables are often associated with 
climate-change studies of coral bleaching and 
changes in coral cover (McClanahan 2022a). Here, 
coral cover is subordinate to the temperature variabil-
ity metrics, which suggests a direct rather than an 
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indirect effect of temperature on fish via coral. More-
over, variability metrics of kurtosis, bimodality, and 
skewness are influenced by locations and modify cli-
mate change impacts on corals in this province 
(McClanahan & Azali 2021). Studies of coral–envi-
ronment interactions suggest complex taxa–environ-
ment interaction responses expected to create het-
erogeneous responses among reef species along the 
African coastline (McClanahan et al. 2020). A fish-
eries management implication of these rankings and 
future climate models is that protection of biomass 
>500 kg ha–1 could partially compensate for the 
near-term climate-change impacts on fishes. In gen-
eral, fishes appeared to respond to environmental 
stress and coral losses with shifts in species composi-
tion that can compensate to stabilize overall diversity 
and ecological processes (Chabanet 2002, McClana-
han et al. 2014). 

4.4.  Community composition 

Patterns reflected in species composition some-
times differed from our total numbers of species 
proxy. Fish communities differed based on their ex -
posures to the centralization and bimodal aspects of 
the SSTs, rare warm and cold water, and rates of SST 
rise. Specifically, the numbers of species in the Poma-
canthidae community were associated with more cen-
tralized SST distributions, slow rate of rise, and occa-
sional weak spikes of warm water, while the Scarinae 
species numbers showed less centralized distribu-
tions, associated with higher rates of SST rise, and 
occasional cold and hot water. Relationships among 
these communities and coral cover were complex, 
with peak numbers of Pomacanthidae species at ~50% 
cover and a low trough for the Scarinae at ~40% cover. 
Therefore, there are likely to be changes in species 
composition within these taxonomic groups as ben-
thic cover and reef calcification rates change. Species 
composition also changed with depth and tempera-
ture variability metrics. Specifically, species of Poma-
canthidae increased while the Pomacentridae de -
creased with depth and Chaetodontidae declined and 
Scarinae increased with median temperature. For the 
Chaetodontidae–Scarinae community axis, SST rate 
of rise was strong and negative for the Pomacanthi-
dae, while the Scarinae community showed more tol-
erance (Table 1). Similar patterns were seen for cumu-
lative excess heat (DHW), which is the dominant 
variable used to predict climate change. It was shown 
here to be a weak predictor for fish, and species ap -
pear to tolerate moderate to high levels of excess 

heat. Nevertheless, reefs undergoing rapid tempera-
ture rises and experiencing excess heat are predicted 
to change their species composition to wards fewer 
Pomacanthidae and Chaetodontidae and more Poma-
centridae and Scarinae species. An increase in herbi-
vorous fish catch has been documented from studies 
of climate-degraded Seychellois reefs (Robinson et al. 
2019). Complex interactions among species were 
evident between depth, temperature variability met-
rics, human resource extraction, and coral, thus mak-
ing predictions based on a single climate change vari-
able problematic. 

4.5.  Conclusions 

Our study provided a more spatially refined view of 
provincial fish biodiversity than previous global, 
regional, and conservation prioritization efforts. Past 
efforts have used presence/absence data and over-
lapping polygons or rarefaction methods (Selig et al. 
2014, Jenkins & Van Houtan 2016). These methods 
are sensitive to the density of data, and this affects 
subsequent spatial patterns and overlap in species 
distributions, particularly when identifying centers of 
biodiversity (Kusumoto et al. 2020). The environmen-
tal modeling methods used here provided an alter-
native approach by accounting for habitats and envi-
ronmental processes and their variability at smaller 
scales. Environmental modeling methods should 
therefore provide information to locate small to mod-
est-sized areas for conservation, often preferred or 
politically feasible for protected area designations 
(Boonzaier & Pauly 2016, McClanahan 2023). Spatial 
environmental predictions are useful for planning 
and should eventually augment the current practices 
of mapping diversity from sparse presence/absence 
and extrapolated species range information. The cel-
lular map predictions combined with the hotspot 
algorithm provided further information to identify 
reef neighborhoods of high numbers of species and 
not just local diversity. High fish diversity, reef 
clusters, and connectivity were positively associated 
and likely to interact to maintain high numbers of spe-
cies. Clustering of reefs and common biogeographic 
factors, such as continents, islands, reef area, and 
retention connectivity explained some of the variabil-
ity (Crochelet et al. 2016, Maina et al. 2020). However, 
the local-scale environmental and human resource 
use factors were among the strongest predictors. 

Species changes, compensation, and high similarity 
among ecoregions suggests a high resilience in 
numbers of species. The remote Mascarene and 
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 Carajos/Tromelin ecoregions would be exceptions to 
species resilience in this faunal province. Some past 
studies suggest that climate change impacts may be 
equal or less influential on fish species than ecologi-
cal changes attributed to reductions in biomass by 
fishing (McClanahan & Muthiga 2016, Fredston et al. 
2023). Fortunately, long-term fisheries yields are 
maximized above or close to these biomass–ecologi-
cal change points, which, if achieved, can reduce 
stark yield gains–biodiversity loss tradeoffs (McCla-
nahan 2018, 2022b). To date, prioritizations in this 
region for protected area investment has focused on 
the distribution of charismatic species or connectivity 
(van der Elst & Everett 2015, Crochelet et al. 2016, 
Maina et al. 2020). Yet, the relationship between con-
nectivity or the presence of charismatic species with 
subtidal taxa of economic importance has not been 
evaluated. Connectivity appeared to contribute to 
numbers of species but was subordinate to several 
other environmental factors. The fish assemblage and 
environmental association undertaken here provides 
additional information for conservation decision 
making. The results indicate the importance of man-
agement of fisheries stocks near or above maximum 
sustained yield thresholds to maintain biodiversity 
and community resilience at large scales. 
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