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Preface 

The global food production systems require expanding their capacity to produce 
almost twice the current levels to safeguard the food security of the burgeoning 
population worldwide. More than 800 million suffering from undernourishment 
worldwide pose a great risk to the attainment of sustainable development goal 
(SDG) 2 of the UN that targets “End hunger, achieve food security and improved 
nutrition and promote sustainable agriculture” within the next 7 years. The challenge 
is further exacerbated by the rising weather extremities and unpredictability in 
rainfall patterns and pest-pathogen dynamics associated with global climate change 
that has profound negative impact on the agricultural productivity and farm incomes 
worldwide. Also, the future targets of food production should be secured in a 
resource-constrained agricultural setting and with least environment footprint, thus 
calling for sustainable innovations in agri-farming systems and enhanced participa-
tion of women in agriculture. The challenge to reduce hunger is alarming in the case 
of developing nations particularly in Asia and Africa that house the largest propor-
tion of people suffering from malnutrition and other nutrition-related issues. Fur-
thermore, the agri-food systems in Asia and Africa are severely constrained by 
subsistence nature of farming, declining land and other agricultural resources, 
increasing environmental pollution, soil and biodiversity degradation, and climate 
change. Therefore, this book series, “Sustainable Agriculture and Food Security,” 
has been planned to support the global efforts towards sustainability by providing 
timely coverage of the progress, opportunities, and challenges of sustainable food 
production and consumption in Asia and Africa. The series narrates the success 
stories and research endeavours from the regions of Africa and Asia on issues 
relating to SDG 2: Zero hunger. It fosters research in transdisciplinary academic 
fields spanning across sustainable agriculture systems and practices, post-harvest 
and food supply chains. The focus of the series is to provide a comprehensive 
publication platform and act as a knowledge engine in the growth of sustainability 
sciences with a special focus on developing nations. 

As per the UN’s Food and Agriculture Organization (FAO), aquaculture is 
defined as the ‘farming of aquatic organisms including fish, molluscs, crustaceans
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and aquatic plants. Farming implies some sort of intervention in the rearing process 
to enhance production, such as regular stocking, feeding, protection from predators, 
etc. Farming also implies individual or corporate ownership of the stock being 
cultivated, the planning, development and operation of aquaculture systems, sites, 
facilities and practices, and the production and transport.’ Although aquaculture 
has been around for millennia, it started to contribute significantly to the global food 
supply and rural livelihoods about 30–40 years ago. In the context of target geo-
graphic regions of the book series, Asia dominates global aquaculture accounting for 
92% of global production, and Africa has <2% share in global production. However, 
in the last 20 years, aquaculture production in sub-Saharan Africa (SSA) has grown 
by 11% annually on average, almost twice as fast compared with the rest of the 
world, and some African countries with a growth of 12–23% per year. However, due 
to fish disease triggered by poor water and farm management practices in the 
beginning of 2015, the high cost of local production, competition from cheap fish 
imports, and then the recent addition of the COVID-19 pandemic, the production 
level has been stagnated. As per an estimate, the projected increase in demand for 
aquatic foods in SSA required that aquaculture produces an additional 5 million 
tonnes by 2030 and 10.6 million tonnes by 2050. However, such growth must not 
come at the cost of aquatic ecosystem health, increased pollution, animal welfare, 
biodiversity, or social equality. This requires new, sustainable and equitable aqua-
culture development strategies. 
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According to a joint report of Agence Française de Développement (AFD), 
European Commission, and German International Development Agency (GIZ), 
‘the aquaculture value chain—whether it be the primary production stage or the 
subsequent product supply chain—can contribute to achieving SDGs at both 
national and regional levels.’ 

Among different kind of aquaculture types—subsistence aquaculture, small-scale 
commercial aquaculture, SME aquaculture, and industrial aquaculture—the subsis-
tence aquaculture has the potential to contribute to most of the relevant SDGs. This is 
due to the family level of operations, where work is well distributed, meaningful, and 
empowering. Small-scale commercial aquaculture in terms of its contribution to the 
SDGs also has a greater opportunity to directly contribute to family income, and thus 
address poverty issues. This will assist to achieve other SDGs at community level, 
including good health and education opportunities. It can also generate some jobs, 
and being local, can be undertaken on a part-time basis by women. In the majority of 
the aquaculture sector in Africa, the above-mentioned two types of aquaculture 
farming are more common in Africa, and therefore improving aquaculture in Africa 
will significantly contribute to achieving SDGs. 

In view of this, the present book, Emerging Sustainable Aquaculture Innovations 
in Africa, provides a platform to appreciate current efforts and plan future work on 
this important topic. The book contains 26 chapters written by various experts and 
practitioners in aquaculture in Africa. The chapters are written under four parts: 
Aquaculture Nutrition and Feed Management, Water Quality Management, Aqua-
culture Development and Innovations in Africa, and Aquaculture Animal Welfare. I 
would like to congratulate the editors, Ndakalimwe Naftal Gabriel, Edosa Omoregie,



and Kenneth Prudence Abasubong, and all authors for their valued contributions. I 
am sure that this book is a great resource for students, researchers, aquaculture 
farmers, aquaculture educators and extension agents, policy makers, and other 
stakeholders engaged in transforming aquaculture in Africa and possibly other 
parts of the world. 
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Chapter 15 
Nutrient Budget of Cage Fish Culture 
in a Lacustrine Environment: Towards 
Model Development for the Sustainable 
Development of Nile Tilapia (Oreochromis 
niloticus) Culture 

Safina Musa, Christopher Mulanda Aura, Tumi Tomasson, 
Ólafur Sigurgeirsson, and Helgi Thorarensen 

Abstract Carried out fundamentally in an open system, cage culture-derived nutri-
ents can exacerbate the quality of the lacustrine environment. Information on 
nutrient loading from African inland waters is scarce, yet sustainable development 
of fish cage culture depends on it. This chapter reviews siting of fish cages, 
nutritional content, digestibility of fish feeds, and nutrient load in wastes of Nile 
tilapia in African inland waters. In addition, this chapter proposes a theoretical model 
for nutrient (nitrogen N and phosphorus P) budget in a Nile tilapia cage aquaculture 
farm to calculate the amount (kg) of N and P produced and released to the environ-
ment for each ton of fish produced basing on best and worst-case scenarios. The 
review shows that majority of the cages are sited nearshore and/or in shallow areas 
that could exacerbate environmental challenges. Poor digestibility of fish feeds, 
particularly P, raises concern due to the risk of eutrophication. The majority of the 
feeds used in African inland waters for cage fish culture recorded N deficiency in 
relation to P that could lead to poor retention, hence high nutrient loading into the
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environment. The theoretical model shows that about 46% of N and 39% of P from 
feed input are released into the environment for each tonne of tilapia produced. 
However, when the feed loss is high but at the same time the nutrient retention in fish 
is inefficient, 91% of N and 89% of P from feed input are discharged into the 
environment. Sensitivity analysis shows that nutrient loading from cage culture is 
very sensitive to feed loss, FCR and nutrient retention. The paper concludes with 
recommendations that need to be considered to minimise nutrient loading and its 
impact on the environment.
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Keywords Nile tilapia · Cage culture · Digestibility, Nitrogen, Phosphorus · 
Nutrient loads 

15.1 Introduction 

Globally, wild fish stocks are at their production limit at a time of rapid human 
population growth, urbanisation and income increase have sent demand for fish 
protein skyrocketing (Akintola et al. 2013; FAO 2016; Anderson et al. 2017). The 
dwindling catches have increased the interest in cage culture as an alternative source 
of fish (Aura et al. 2017; Musinguzi et al. 2019; Hamilton et al. 2020; Musa et al. 
2021a), and aquaculture will necessarily play a central role in bridging the widening 
gap between fish demand and its supply (FAO 2018; Obiero et al. 2019; FAO 2020). 

Cage fish culture is an old practice and dates to the late 1800 in Southeast Asia 
(Bao-Tong 1994) but has recently expanded throughout the world due to its benefits. 
As compared to pond fish culture, cages can be stocked at higher densities hence 
high production per unit volume of water; many types of existing water bodies can 
be used, hence reducing pressure on land, a relatively low initial investment is 
required in an existing body of water, ease of harvesting of fish, less manpower is 
required and high return on investment (De Silva and Phillips 2007; EL-Sayed 
2006). For a long time in Africa, cage fish culture has been reported to be still in 
its infancy (Bostock et al. 2010; Asmah et al. 2016; Aura et al. 2018). However, by 
2010, the cage fish culture industry in Africa was reported to be emerging at a faster 
rate than any other region (Bueno et al. 2015). The rapid expansion of cage fish 
farming on African inland waters has been reported in Lake Victoria in Kenya (Aura 
et al. 2018), Lake Victoria in Uganda (Blow and Leonard 2007), Lake Volta in 
Ghana (Asmah et al. 2016), Lake Kariba in Zimbabwe (Berg et al. 1996), Lake 
Malawi in Malawi (Blow and Leonard 2007), with Lake Victoria recording the 
highest number of cage aquaculture installations by the year 2019 (Table 15.1). In 
sub-Saharan Africa, the production of aquaculture fish has increased more than 
sixteen-fold since 1995 (FAO 2018), driven primarily by the expansion of tilapia 
cage aquaculture (Satia 2011). 

While cage aquaculture is expanding in sub-Saharan Africa, such systems may 
have negative environmental consequences. Contrary to pond fish farming, which 
depends on fertilisers with high N and P contents to promote biological productivity, 
cage systems are seldom fertilised. Yet, N and P are essential elements for



organismal development (Ackefors and Enell 1994; Von Sperling and Chernicharo 
2005). Consequently, fish feeds for cages have higher N and P content (Musa et al. 
2021b). Cage aquaculture raises concerns about water quality deterioration due to 
solid wastes (Ngupula et al. 2012; Aura et al. 2018) and soluble wastes, especially 
nitrogen and phosphorus compounds. Over time, this may cause eutrophication 
(Aura et al. 2018), algal blooms and changes in zooplankton community structure 
(Braaten 2007; Ngupula and Kayanda 2010; Villnas et al. 2011; Kashindye et al. 
2015; Egessa et al. 2018). Therefore, the rapid expansion of cage fish culture in most 
African inland lakes, such as Lake Victoria, systems already under severe environ-
mental stress (Hecky et al. 2010), is highly questionable. 

15 Nutrient Budget of Cage Fish Culture in a Lacustrine Environment: Towards. . . 367

Table 15.1 Estimated number of cages on African inland water bodies by 2019, adopted from 
Musinguzi et al. (2019) 

Country Water body Estimated total number of cages 

Kenya Lake Victoria 12,086 

Ghana Lake Volta 3817 

Ghana River Volta 3184 

Zambia Lake Kariba 254 

Rwanda Lake Kivu 208 

Rwanda Lake Muhazi 199 

Uganda River Nile 135 

Malawi Lake Malawi 53 

Uganda Lake Albert 

Uganda Lake Kyoga 102 

Uganda Kazinga channel 10 

Uganda Lake George 10 

Uganda Lake Kawi 3 

Tanzania Lake Kumba 40 

Uganda Lake Mugogo 

Uganda Lake Pallisa 4 

Tanzania Lake Tanganyika 

Uganda Reservoir 10 

Total 20,114 

With the burgeoning industry coupled with little regulation, the use of more 
inputs, mainly fish feed, is likely to skyrocket (Henriksson et al. 2018; Musa et al. 
2021b), synonymous with increased waste generation. Moreover, the high densities 
of fish in cages would translate to the high production of wastes from unused feeds 
and faeces. This could be detrimental to the lake’s ecosystem health, threatening the 
future sustainability of capture fisheries even more and preventing the development 
of a sustainable blue economy. 

Sustainable cage fish culture and the development of a sustainable blue economy 
will depend on understanding the nutrient loads of cage farms in freshwater aqua-
culture since every ecosystem has a maximum assimilative capacity, which is 
determined by the maximum acceptable environmental impacts (Samuel-Fitwia



Water Body

et al. 2012). Furthermore, reducing the environmental footprint of cage culture 
operations requires estimating the amount of waste associated with such systems 
and their management. Yet, the fate and quantitative contribution of the new N and P 
sources emanating from feed wastage in cage fish culture in African inland waters is 
scarce. Understanding the nutrient budget of cage fish farms is useful in lacustrine 
development, management, and policy formulation. This chapter reviews factors 
affecting nutrient loads and their impacts, quantify nutrient loadings from cage fish 
culture in African inland waters from reported literature and hypothesised nutrient 
budget and carries out sensitivity analysis on the hypothesised model to explore and 
better understand the effects of uncertainties on nutrient loadings in the production of 
Nile tilapia to guide cage culture investments. 
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15.2 Factors Affecting Nutrient Loads and their Impacts 
on Inland Waters 

15.2.1 Siting of Cages 

Cage systems, if not correctly cited, can cause eutrophication, habitat degradation, 
and cause conflicts with other users (Beveridge 1984). These scenarios are highly 
likely to occur in African inland waters due to the burgeoning industry and because 
most cage fish farms in African inland waters use backyard fish feeds with low water 
stability (Musa et al. 2021b), which can worsen environmental challenges from such 
systems (Beveridge 1984). The majority of the fish cages (>70%) in African inland 
waters are sited nearest to the shoreline (Table 15.2), contrary to best practices that 
require cages to be placed within the 200 m distance from the shoreline of the lakes. 
Furthermore, almost all cages in African inland lakes are in shallow waters (4–8 m)  
(Musinguzi et al. 2019) despite recommendations that cages should be placed in 
deeper waters (>10 m) (Kamadi 2018). Nearshore and shallow areas have low 
flushing rates, resulting in high nutrient loading and increased phytoplankton

Table 15.2 Estimated dis-
tance (range and mean) 
between the shoreline and 
cages (Musinguzi et al. 2019) 

Distance of cages from shoreline (m) 

Range Mean 

Lake Kariba 220.2–1759.8 894.4 

Lake Kivu 5–120.1 41.3 

Lake Kumba N/A 66.7 

Lake Malawi N/A 1100 

Lake Muhazi 48.23–150 82.6 

Lake Tanganyika 141.99–142.0 141.99 

Lake Victoria 21–665 211.6 

Lake Volta 0–860 191.7 

River Nile 13.4–621 178.5 

River Volta 0–321 30.2



biomass from excess feeds. Most inland lakes, such as Lake Victoria, are already 
choking on excessive nutrients from industrial and agricultural wastes. Therefore, 
inappropriate siting of cages could exacerbate environmental challenges. Moreover, 
a regulatory framework for cage aquaculture for most African inland lakes is 
inadequate. Therefore, the burgeoning industry may pose a threat to ecosystem 
health.
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The majority, if not all, of the African inland lakes, have not been mapped for 
suitable sites for cage culture, hindering sustainable development of the industry. 
However, preliminary delineation of suitable sites for cage farms in the Kenyan part 
of Lake Victoria has been undertaken, with approximately 9% of the total area 
delineated as most suitable for fish cages (Fig. 15.1) (Aura et al. 2021). The findings 
could be a model for other African inland lakes where tilapia cage culture already 
occurs or may occur in the future. 

15.2.2 Nutritional Content and Digestibility of the Feeds 

Just like other cultured species, nutrition is essential, not only for the growth of 
tilapia but for the environmental sustainability of cage systems (Musa et al. 2021b). 
Kong et al. (2020) reaffirm that fish feed quality is a critical factor in determining the 
environmental impact of aquaculture. Most of the studies carried out on fish feeds in 
Africa (Table 15.1) have shown that the dietary protein content for feeds follows the 
recommended levels (25–35%) for Nile tilapia larger than 10 g (Balarin and Haller 
1982; Tacon 1987; El-Sayed and Teshima 1991; Khattab et al. 2000). However, 
backyard feed in Africa seems to record higher fibre content, hence inferior to 
extruded feed (Table 15.1). Fibre content above 8–12% is undesirable in fish feed 
because it reduces digestibility (De Silva and Anderson 1995; Leal et al. 2010); 
hence would translate to high nutrient loading into the environment. A high level of 
fibre has also been reported to reduce dietary protein utilisation in several species 
(Leary and Lovell 1975; Fontainhas-Fernandes et al. 1999). The low digestibility of 
backyard feed could also be attributed to high ash content, which is in line with 
Kitagima and Fracalossi (2011), who reported low dry matter digestibility for fish 
and shrimp offal meals with high ash contents. Similar results have also been 
observed in rainbow trout (Oncorhynchus mykiss) (Bureau et al. 1999) and hybrid 
tilapia (O. niloticus × Oreochromis aureus) (Zhou and Yue 2012). Overall, the high 
digestibility of nutrients in extruded feed could have been enhanced by extrusion 
cooking (Cheng and Hardy 2003; Barrows et al. 2007; Gaylord et al. 2008), thereby 
making commercial feed superior to backyard feed. 

Most of the fish feeds in Africa have higher P content (above 1%) (Table 15.3) 
despite recommendations that P content for tilapia feeds should be less than 0.7% 
(KEBS 2015). Hence, apart from losses due to unavailability, the excess P in fish 
feeds cannot be metabolically utilised by fish and will ultimately be released into the 
environment (Roy and Lall 2004; Kong et al. 2020). This can increase the pollution 
potential from fish feeds. Fish feeds are the significant production cost for



aquaculture (Naylor et al. 2000; FAO 2020) and commonly account for over 
60–70% of the cost of producing tilapia (Bolivar et al. 2006; Elnady et al. 2010; 
Musa et al. 2021a). Due to the high costs of fish feeds, many efforts are being 
diverted to replacing the expensive animal protein with plant protein ingredients.

370 S. Musa et al.

Fig. 15.1 Map of Lake Victoria, Kenya, showing potential suitability for cage fish culture. (Aura 
et al. 2021)
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Plant ingredients have been reported to increase the digestibility of protein fraction 
of plant ingredients (Pezzato et al. 2002; Neto and Ostrensky 2015). However, plant 
ingredients have been associated with higher P loss due to the low digestibility of 
P. According to Ravindran et al. (1994), Up to 80% of the total P content in plant 
ingredients is reported to be in phytate. Most monogastric aquatic animals lack 
endogenous enzymes for phytate hydrolysis (Cao et al. 2007). The low digestible 
P content in fish feeds in Africa, particularly in backyard feed, could be due to the 
high inclusion of plant ingredients in the diets (Musa et al. 2021b), raising concern 
due to the risk of eutrophication, especially in freshwater lakes such as Lake Victoria 
that has been reported to be highly eutrophic (Ochumba and Kibaara 1989; 
Lung’ayia 2000; Kling and Mugidde 2001).
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Table 15.3 Nutritional content (g kg-1 ) for pelleted and extruded feed used for Nile tilapia cage 
culture in African inland waters 

Nutrients
(g/kg)

Musa et al.
( )2021a, b

Musa et al. 
( )2021a, b

Neto and 
Ostrensky 
(2015) 

Gondwe
et al. )(2011

Karikari 
(2016)

Total dry 
matter 

948 947.8 902.3 845 915.5 

Digestible dry 
matter 

680.7 560.3 608.5 

Total organic 
matter 

800.2 804.4 806.8 

Digestible 
organic matter 

605.2 577.3 578.9 

Crude protein 301 282 276.7 359.4 350 

Digestible 
protein 

277.3 245 236.8 

Crude fibre 
(g/kg) 

42.1 168.2 42.8 

Ash 92.4 130.4 – 77 

Total 
phosphorus 

10 11.5 ± 1.0 14.5 8.7 14 

Digestible 
phosphorus 

5.87 3.2 ± 0.6 6.5 

15.3 Nutrient Load in Wastes in African Inland Waters 

The amount of waste produced in cage fish farming depends on several factors, 
including feed quality, feed processing method and feed loss. Extrusion processing 
of fish feeds has been reported to produce quality pellets and improve faecal size and 
durability in water, hence reducing pollution in effluents (Welker et al. 2018). 
Notably, extruded feeds have been reported to have high water stability compared 
to pelleted feeds, hence fewer nutrients leaching from the feeds (Musa et al. 2021b).



Reference Type of feed FCR N P N P N P

This reduces the pollution potential from the aquaculture system. Table 15.4 shows 
the feed types and N and P budgets from available literature on tilapia cage culture in 
African inland waters. The N and P loading varied considerably with higher FCR 
(>2), giving the highest N (>100 kg/ton) and P (>23 kg/ton) loadings. Notably, the 
environmental loading of P and N per kg of tilapia produced seems to be more than 
twice as high when backyard feed is used compared to extruded feed (Table 15.4). 
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Table 15.4 Reported types of fish feed, FCR and nutrient loading in cage fish farming in African 
inland waters 

Total amount 
of nutrient 
involved (kg) 

Nutrient 
recovered in 
fish (kg) 

Net amount 
of waste 
output (kg) 

Musa et al. (2021a, b) Commercial 
feed 

1.6 76.8 16 27.2 8.5 49.6 7.5 

Musa et al. (2021a, b) Backyard feed 2.8 126 30.8 21 7.8 105 23 

Karikari (2016) Commercial 
feed A 

2 123.4 26.9 29.9 4.1 93.5 22.8 

Karikari (2016) Commercial 
feed B 

1.7 105.4 22.95 29.83 4.41 75.6 18.6 

Gondwe et al. (2011) Commercial 
feed 

2.7 155.3 23.5 50.6 8.1 104.7 15.4 

Neto and Ostrensky 
(2013) 

Commercial 
feed 

1.35 69.23 19.86 24.23 5.56 45 14.3 

Mass balance analysis for cage fish culture has been carried out for a long time in 
temperate environments, and it has shown that about 31% N and 31% of P added 
through fish feeds were removed as fish biomass, and about 69% of N and 69% of P 
were discharged into the environment (Gowen and Bradbury 1987; Holby and Hall 
1991; Hall et al. 1992). For the few mass balance models for tilapia in Africa, >30% 
of N added through fish feeds have been reported to be removed by fish at harvest. 
However, less than 25% of P added through fish feeds were removed by fish at 
harvest (Table 15.4). The assimilation of N from feed by fish in the tropical region 
was comparable to the temperate region, while the assimilation of P was much 
poorer than in temperate studies. The poorer assimilation of P in the tropical region 
herein could be because the majority of the fish feeds reported N deficiency 
compared to P, as indicated by lower N:P ratios in feed as compared to fish. The 
lowest N:P ratio in feeds in the tropical region confirms that P in fish feeds could be 
more than required for growth. Research in temperate and tropical countries concur 
that fish feeds are the primary source of added N and P from fish cage culture in a 
lacustrine environment (Gondwe et al. 2011; Neto & Ostrensky 2013; Karikari 2016; 
Musa et al. 2021b). Hence, the addition of N deficient fish feeds in African inland 
waters will not only reduce the growth rate of caged tilapia but will lead to poor 
retention and high nutrient loading into the environment. In most freshwater lakes 
such as Lake Victoria, phytoplanktons are limited by N rather than P (Guildford and 
Hecky 2000; Gikuma-Njuru and Hecky 2005; Mwamburi et al. 2020), favouring



heterocystous N-fixing cyanobacteria. Loss of N deficient fish feed from cage farms 
could exacerbate this effect. 
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The environmental losses of nitrogen and phosphorus from cages in tropical 
countries proved to be threefold more significant than those reported in the literature 
for laboratory experiments and pond culture (Fernandes et al. 2007; Boyd et al. 
2008; Azevedo et al. 2011). This could have been associated with culture systems, 
and it could also be because most of these studies did not estimate feed loss. It could 
also indicate that fish cage culture may have higher inputs of nutrients to the 
environment than pond fish farming, which could become a bone of contention for 
the industry. 

15.4 Theoretical Mass Balance Model 

In this section, we will use a theoretical mass balance model to estimate the levels of 
N and P discharged from cage fish farms producing a tonne of tilapia. The hypo-
thetical model uses average values from published literature on the different com-
ponents to formulate the model using various assumptions on feed loss, FCR, N and 
P content of feed and fish. The nitrogen content of farmed tilapia is 3% (on a wet 
weight basis) (Neto and Ostrensky 2013). The phosphorus content of tilapia is 
0.85% (Musa et al. 2021a, b). The current cage culture of tilapia utilising commercial 
feeds limits feeding loss to 5% (Musa et al. 2021b). For juveniles > 10 g, 25–30% 
crude protein level is recommended (Balarin and Haller 1982; Tacon 1987; El-Sayed 
and Teshima 1991; Khattab et al. 2000). Phosphorus content in tilapia feeds have 
been reported to be between 1–1.6 (Neto and Ostrensky 2013, Musa et al. 2021b). 
Previous studies on Nile tilapia have reported FCR of 1.4–4.4 (El-Sayed 1998; 
Al-Hafedh 1999; Liti et al. 2005, 2006; Kubiriza et al. 2017; Musa et al. 2021b). 
In the hypothetical model, a total input of 64 kg and 16 kg for N and P, respectively, 
is required to produce a tonne of Nile tilapia (Fig. 15.2). With FCR of 1.4, a total of 
26 kg (46.42%) N and 5.5 kg (46.88%) P is released into the environment for every 
tonne of Nile tilapia produced in cages. A total of 30 kg (53.57%) N and 8.5 kg 
(60.71%) P were retained by harvested fish. According to Boyd and Queiroz (2001), 
61.9–77.2% of nitrogen from feed inputs is loaded into the environment, while 
phosphorus loads account for 43.8–89.4% of feed inputs. The low TN and TP 
loadings recorded in the hypothetical model (Fig. 15.2) were based on moderate 
values for FCR and feed loss in tilapia culture. However, higher FCR of >3 have 
been recorded for tilapia (Gondwe et al. 2011; Kubiriza et al. 2017); hence the 
nutrient loadings, in reality, may be higher than those recorded in the hypothetical 
model.
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Fig. 15.2 Theoretical model for nutrient mass budget for a conjectured production of one ton of 
Nile tilapia in cages in a lacustrine environment 

15.4.1 Sensitivity Analysis of the Model 

Many factors can affect the loading rates of nutrients in a lacustrine environment; 
hence the nutrient loads reported in African inland waters in Table 15.4 above and in 
the theoretical model (Fig. 15.2) may vary with different factors. Musa et al. (2021b) 
reported a feeding loss of up to 25% for cage fish farms in Lake Victoria, Kenya. 
However, higher feed loss exceeding 30% has been reported under aquaculture 
elsewhere (Thorpe et al. 1990), with a corresponding increase in FCR values. Wu 
(1995) recorded a feeding loss of up to 40% when fish were fed on trash fish. 
Sometimes higher N and P have been reported in fish feeds (8% N reported by Hall 
et al. 1992 and 2.14% P reported by Foy and Rosell 1991) and lower in fish muscle. 

In a scenario where cage farms use fish feeds with higher feed loss (e.g. 20%) and, 
in essence, higher FCR (e.g. 4), leaving other factors constant, the farm would 
discharge about 5 times the amount of N and 6 times the amount of P in the 
environment compared to the theoretical model (Fig. 15.3a). In the second scenario, 
where the feed loss is high, but at the same time the nutrient retention in fish is 
inefficient, the cage farms would discharge about 91% of N and 89% of P in the 
environment (Fig. 15.3b). This is in line with the studies of Handy and Poxton 
(1993), who showed that when the feed wastage is high and the N retention rate is 
lower, greater than 90% of the supplied N is lost to the system. The model indicates 
that nutrient loading from the cage culture of Nile tilapia is very sensitive to feed loss 
and, in essence, the FCR of the diet. Nutrient retention is the next factor that affects 
nutrient loading in a lacustrine environment. In aquaculture feed cost accounts to 
upto 70% of the production costs (Watanabe 2002; El-Sayed 2006; Cheng et al. 
2010; Khalil et al. 2019; Allam et al. 2020). The values have been reported to be



even higher (>70%) in cage culture (Musa et al. 2021b). The need to minimize feed 
losses cannot be overemphasized, not only for environmental sustainability in fish 
cage culture but for economic production issues (Talbot and Hole 1994; Musa et al. 
2021b). 
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Fig. 15.3 Mass budget for a conjectured production of one ton of Nile tilapia in cages in a 
lacustrine environment for two different pollution scenarios: (a) when the rate of feed loss is high 
hence higher FCR and (b) when the rate of feed loss is high, FCR is high with poor N assimilation 
and retention
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15.5 Conclusion and Recommendations 

Feed quality is a key factor in determining the impact of aquaculture on the 
environment. The nutrient loads in African inland waters are higher than desirable 
due to the low digestibility of feeds translating to higher FCRs. The low N content in 
relation to P and high fibre contents of fish feeds result in a higher nutrient discharge 
into the environment. In addition, the use of backyard fish feeds for fish cage culture 
seems inferior to commercial feeds not only due to high fibre content but primarily 
due to low water stability that could cause a disproportionate increase in total P and 
N output loading from cage fish farming. The use of commercial fish feed is highly 
recommended for cage fish culture in African inland waters. We recommend the 
zonation of suitable sites for cage fish farming in all African inland lakes to ensure 
proper water circulation and, in essence, good water quality. Good water quality will 
ensure a high appetite for fish, resulting in the increased digestive function of the 
intestine and increased digestibility of nutrients in the intestines, translating to low 
FCRs. In addition, using best practices in feeding regimes will go a long way in 
reducing FCR and, in essence, the cost of production. There is a need to enhance the 
N content of fish feeds to reduce P discharge into the environment and limit the 
proliferation of nitrogen-fixing cyanobacterial species. 

Furthermore, there is a need to incorporate phytase in plant-based fish feeds to 
enhance the bioavailability of P and reduce the nutrient discharge into the environ-
ment. The environmental sustainability of the cage culture industry is very sensitive 
to feed loss. Hence, feeding management practices, particularly those that reduce 
feed loss, is a crucial point in reducing the input of these nutrients in the aquatic 
environment. For example, using water-stable pellets through extrusion would be 
one way of reducing feed loss to the environment. We recommend fast-tracking of 
regulations for inland waters to control locations of new entrances and relocation of 
existing cages to appropriate locations. Furthermore, mapping suitable sites for cage 
fish culture in African inland waters coupled with best management practices is 
imperative so that aquaculture remains within the carrying capacity of inland water 
bodies for the environmental sustainability of the industry. 
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