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• Dynamic soil erosion rates were estimated
using monthly rainfall and NDVI datasets.

• The greatest risk of soil erosion occurs be-
tween February and April.

• Reduced vegetation cover leads to greater
soil erosion susceptibility.

• Soil erosion hotspots were identified and
should be the focus of future investiga-
tions.

• Gross soil loss through erosion amounts to
10.71 Mt year−1.
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Soil erosion accelerated by poor agricultural practices, land degradation, deprived infrastructure development and other
anthropogenic activities has important implications for nutrient cycling, land and lake productivity, loss of livelihoods
and ecosystem services, aswell as socioeconomic disruption. Enhanced knowledge of dynamic factors influencing soil ero-
sion is critical for policymakers engaged in land use decision-making. This study presents the first spatio-temporal assess-
ment of soil erosion risk modelling in the Winam Gulf, Kenya using the Revised Universal Soil Loss Equation (RUSLE)
within a geospatial framework at a monthly resolution between January 2017 and June 2020. Dynamic rainfall erosivity
and land cover management factors were derived from existing datasets to determine their effect on average monthly soil
loss by water erosion. By assessing soil erosion rates with enhanced temporal resolution, it is possible to provide greater
knowledge regarding months that are particularly susceptible to soil erosion and can better inform future strategies for
targeted mitigation measures. Whilst the pseudo monthly average soil loss was calculated (0.80 t ha−1 month−1), the ap-
plication of this value would lead to misrepresentation of monthly soil loss throughout the year. Our results indicate that
the highest erosion rates occur between February andApril (average 0.95 t ha−1month−1). In contrast, betweenMay and
August, there is a significantly reduced risk (average 0.72 t ha−1 month−1) due to the low rainfall erosivity and increased
vegetation cover as a result of the long rainy season. The mean annual gross soil loss by water erosion in the Winam Gulf
catchment amounts to 10.71Mt year−1,with amean soil loss rate of 9.63 t ha−1 year−1. Thesefindings highlight the need
to consider dynamic factorswithin theRUSLEmodel and can prove vital for identifying areas of high erosion risk for future
targeted investigation and conservation action.
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1. Introduction

Soil erosion is one of the greatest global threats to water and food secu-
rity (Amundson et al., 2015; Borrelli et al., 2017; Igwe et al., 2017). Within
East Africa's interlacustrine countries of Burundi, Kenya, Rwanda, Tanzania
and Uganda soil erosion is the main cause of land degradation to agricul-
tural and pastoral landscapes (Wynants et al., 2019). Land degradation
caused by soil erosion leads to the loss of nutrient rich surface soils, de-
creased soil fertility and increased runoff with severe consequences for
food, water and livelihood security (Blaikie and Brookfield, 2015;
Obalum et al., 2012; Oldeman, 1992; Pimentel, 2006; Vrieling, 2006).
Sub-Saharan Africa has experienced rapid and extensive land-use change;
between 1975 and 2000 16%of forested areas were lost, whilst agricultural
land expanded 55% (Brink and Eva, 2009). As natural vegetation cover is
displaced, rainfall infiltration capacity decreases, which results in increased
surface runoff contributing to high, nutrient rich sediment loads in rivers
(Van Oost et al., 2000; Zuazo and Pleguezuelo, 2009). Moreover, the in-
creased frequency of extreme weather events occurring due to climate
change will significantly influence the intensity of precipitation, increasing
the energy available in rainfall for eroding soils (Maeda et al., 2010). Yang
et al. (2003) predicted that global average soil erosion would increase ap-
proximately 9% by 2090 due to climate change.Whilst soil erosion is a nat-
ural process, accelerated rates of soil loss, compounded by poor land
management practices and changes to vegetation cover and rainfall inten-
sity, represent serious environmental issues. Increased rates of soil erosion
are directly associated with nutrient loss, negatively influencing agricul-
tural productivity and causing eutrophication of aquatic systems, threaten-
ing food security (Bakker et al., 2007; Istvánovics, 2010; Maeda et al.,
2010).

Estimating the risk of soil erosion is critical to enable policymakers to
implement land-use decisions aimed at mitigating the loss of soil substrate.
Substantial efforts have been made to develop soil erosion models as useful
tools for obtaining a baseline to which alternative land use management
strategies can be applied (Ganasri and Ramesh, 2016; Nearing et al.,
2005). Multiple soil erosion models exist with varying degrees of complex-
ity. The most widely applied empirical model for investigating soil erosion
is the Revised Universal Soil Loss Equation (RUSLE). The model is formu-
lated as the compound product of multiple single layers; rainfall erosivity
(R factor), soil erodibility (K factor), topography (LS factor), cover manage-
ment (C factor), and support practices (P factor), which creates a single soil
erosion risk map. This model has been widely applied to assess the risk of
soil erosion and estimate soil loss around the globe (Chen et al., 2011;
Kouli et al., 2009; Lu et al., 2004; Panagos et al., 2014b; Prasannakumar
et al., 2012) and whilst there are caveats in terms of rate quantification, it
remains a valuable tool for evaluating spatial variability and areas of rela-
tively high risk. The model, calculated and integrated using remote sensing
data and geographical information systems (GIS), enables soil erosion risk
mapping to become feasible with sufficient accuracy and precision in
large basin-scale and regional studies (Magesh and Chandrasekar, 2016).
Conventional methods used to assess soil erosion risk are expensive, time
consuming and have poor spatial resolution. The RUSLE model approach
can predict erosive potential with detailed spatial assessment and charac-
terisation within large areas. However, the majority of RUSLE model appli-
cations are somewhat limited by presenting a singular erosion map of time
averaged data. Whilst soil erodibility and topographic factor maps are rela-
tively static (excluding large scale geogenic or anthropogenic induced land
alterations), high intra-annual variability is expected for rainfall and cover
management factors due to the natural patterns of precipitation and vegeta-
tion growth (Panagos et al., 2012; Schmidt et al., 2019; Wang et al., 2001).

The importance of capturing spatial variability within a soil erosion
model is not a revolutionary concept. Wischmeier and Smith (1965) advo-
cated that soil erosion risk modelling should be assessed with a monthly
temporal resolution. However, due to the lack of availability of high tempo-
ral resolution spatial datasets, the application of this method is limited. Re-
cent studies have integrated dynamic variables into soil risk erosion
modelling, such as R factors (Angulo-Martínez and Beguería, 2009;
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Ballabio et al., 2017; Ma et al., 2014; Nunes et al., 2016) and C factors
(Alexandridis et al., 2015; Schmidt et al., 2018; Yang, 2014) to assess
intra-seasonal and annual changes to soil erosion. However, the application
of combining dynamic R and C factors for assessing soil over multiple years
has not previously been assessed. Quantifying soil loss on a dynamic time
scale will develop awider understanding, and allow for the implementation
of targeted protectionmeasures for susceptible hotspots during particularly
high-risk seasons (Schmidt et al., 2019; Troxler et al., 2004). In this study,
we aim to create a dynamic soil erosion map for theWinamGulf catchment
of Lake Victoria in Kenya, with the following objectives: (1) Use of monthly
R and C factors to delineate inter- and intra-annual spatio-temporal patterns
of soil erosion; and (2) identify soil erosion hotspots within the catchment
to inform ground-truthing surveys and mitigation strategies.

2. Materials and methods

2.1. Study site

The study area was the Winam Gulf catchment (0°38′S-0°10′N, 34°8′E-
35°33′E), with an approximate area of 11,000 km2, located in western
Kenya (Fig. 1). The Winam Gulf catchment comprises four sub-basins;
(i) the Northern Shore, which is relatively flat; (ii) the Nyando, which con-
tains theNandi Hills; (iii) the Sondu, with low plains near the lakeshore and
a mountainous region eastward, and; (iv) the Southern Shore, which is
dominated by extinct volcanic masses (Mt Homa, Gembe Hills and Gwassi
Hills). The dominant soil groups in the region are acrisols, cambisols, and
vertisols (IUSS Working Group W, 2014). The study area experiences an
equatorial climate with dipole rainy seasons which occur in March to
May (long rainy season) and October to November (short rainy season).
Therefore, there is significant interannual variation in the volume and dura-
tion of rainfall in the region with the annual average precipitation between
600 and >2000 mm; the annual average temperature varies between 17.4
and 29.9 °C (Calamari et al., 1995; Fusilli et al., 2013; Okungu et al.,
2005). Historic land use within the catchment area was predominantly nat-
ural vegetation (61.8%), followed by agricultural land (32.5%) and infra-
structure/miscellaneous land use (5.7%) (Calamari et al., 1995).

2.2. Erosion risk assessment using RUSLE

Assessment of the soil erosion risk within the Winam Gulf catchment
was performed in ArcGIS (version 10.7) using the Revised Universal Soil
Loss Equation (RUSLE) (Renard et al., 1997; Wischmeier and Smith,
1978),which calculated soil loss rates by sheet and rill erosion using the fol-
lowing Eq. (1):

A ¼ R� K� LS� C� P (1)

where A is the annual average soil loss (t ha−1 year−1); R is the rainfall ero-
sivity factor (MJ mm ha−1 h−1 year−1); K is the soil erodibility factor
(t ha h ha−1 MJ−1 mm−1); LS is the slope length and steepness factor (di-
mensionless); C is the covermanagement factor (dimensionless, ranging be-
tween 0 and 1); and P is the support practice factor (dimensionless, ranging
between 0 and 1). The equation can bemodified to amonthly soil loss equa-
tion by including a monthly temporal resolution for the dynamic R
(MJ mm ha−1 h−1 month−1) and C (dimensionless, ranging between 0
and 1) factors (Eq. (2)) (Schmidt et al., 2019):

Amonth ¼ Rmonth � K� LS� Cmonth � P (2)

2.3. Rainfall erosivity factor (R)

The rainfall factor (R), an index unit, reflects the effect of rainfall inten-
sity on soil erosion and requires detailed, continuous precipitation data for
its calculation (Wischmeier and Smith, 1978). The R factor is often deter-
mined using rainfall intensity and frequency, as they are more predictive



Fig. 1. Elevation map of the Winam Gulf catchment, Kenya and its major sub-basins: (A) Northern Shore, (B) Nyando, (C) Sondu, and (D) Southern Shore. Roman numerals
represent specific landforms within the Winam Gulf catchment: (i) Nandi Hills, (ii) Kisumu Basin, (iii) Mt Homa, (iv) Gembe Hills, and (v) Gwasshi Hills.
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compared to the total rainfall amount (Ganasri and Ramesh, 2016;Wynants
et al., 2018). However, this information is not readily available for the ma-
jority of Sub-Saharan African countries. Moore (1979) observed a strong
correlation between the kinetic energy of the high intensity storms in
Kenya, Tanzania and Uganda and the mean annual precipitation. Mean
monthly rainfall (MMR) data was acquired from The Climate Hazards
Group Infrared Precipitation with Stations (CHIRPS) dataset, which is a
30+ year quasi-global rainfall dataset (Funk et al., 2015). Using the regres-
sion equation outlined by Moore (1979) and Wynants et al. (2018), the ki-
netic energy (KE) of the rains (Eq. (3)) and the rainfall erosivity factor
(R) were calculated (Eq. (4)) for each month between January 2017 and
June 2020 as shown below:

KE ¼ 3:96�MMRþ 3122 (3)

R ¼ 17:02 0:029� KE−26ð Þ (4)

2.4. Soil erodibility factor (K)

The soil erodibility (K) factor was calculated based on intrinsic topsoil
(0–20 cm depth) properties (i.e. texture, organic matter, structure, and per-
meability) from a harmonised dataset derived from the Soil and Terrain
Database for Kenya, compiled by the Kenya Soil Survey (Batjes, 2013).
Direct measurements of the K factor on field plots are not financially sus-
tainable at regional or national scales. Therefore, the soil erodibility nomo-
graph (Wischmeier et al., 1971) is most commonly used for assessing soil
erodibility. An algebraic approximation of the nomograph that includes
five soil parameters (texture, organic matter, coarse fragments, structure,
and permeability) was proposed by Wischmeier and Smith (1978) and
Renard et al. (1997) as shown in Eq. (5):

K ¼ 2:1� 10−4 M1:14 12−OMð Þ þ 3:25 s−2ð Þ þ 2:5 p−3ð Þ� �
=100

� �
∗ 0:1317

(5)

where OM (%) is the organicmatter content of the soil, s is the soil structure
class (Table S1) and p is the permeability class (Table S2) from Panagos
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et al. (2014b), respectively and M is the textural factor calculated as
shown in Eq. (6)

M ¼ msiltþmvfsð Þ � 100−mcð Þ (6)

In Eq. (6) msilt (%) is the silt fraction content (0.002–0.05 mm); mvfs
(%) is the very fine sand fraction content (0.05–0.1 mm); and mc (%) is
the clay fraction content (<0.002 mm). The very fine sand structure
(0.05–0.1 mm) as sub-factor (mvfs) in Eq. (6) was estimated as 20% of
the sand fraction (0.05–2.0 mm) according to Panagos et al. (2014b). The
use of these equations has previously been applied in East Africa by Fenta
et al. (2020) and Elnashar et al. (2021).

2.5. Topographic factor (LS)

The topographic factor (LS) is the combination of the length (L) and
steepness (S) of the slope to determine the impact of topography on soil ero-
sion. As slope length increases, so does the total soil erosion loss per unit
due to the progressive accumulation of surface runoff. As the slope steep-
ness increases, so does the velocity and erosivity of runoff (Wischmeier
and Smith, 1978). In the present study, the LS factor was computed in
ArcGIS based on the digital elevation model (DEM) from the Shuttle
Radar Topography Mission (SRTM) with 30 m resolution and derived
using ArcGIS (10.3) using Eq. (7) (Mitasova et al., 1996; Pelton et al.,
2012; Prasannakumar et al., 2012; Simms et al., 2003).

LS ¼ flow acc�map resolutionð Þ=22:13ð Þm � sin slope=0:09ð Þn (7)

where flow acc. (accumulation) denotes the accumulated slope effect on a
given cell created using Arc hydro tool, map resolution is the dimension
of the map grid cell, m and n are slope and area exponent, and sin slope
is slope degree of land in sin. The values for m and n, were 0.4 and 1.4, re-
spectively, and were determined based on topographical condition and
land use type (Mitasova et al., 1996; Oliveira et al., 2013; Pelton et al.,
2012).
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2.6. Cover management (C) and conservation support practice factor (P)

The C Factor represents the protective effect of land cover against the
erosive action of rainfall. It represents the relationship between soil loss
in an area with specific vegetation cover and management and an area
with tilled soil, permanently bare during the cropping period, with values
closer to 0 corresponding to denser vegetation and values closer to 1 indi-
cate bare land (Durigon et al., 2014; Renard et al., 1997). Due to the variety
of land cover patterns with spatial and temporal variations, satellite remote
sensing data sets were used for the assessment of the C factor
(Prasannakumar et al., 2012). Moderate-Resolution Imaging
Spectroradiometer (MODIS) imagery from the Terra platform was used to
determine monthly C factors. Normalised Difference Vegetation Index
(NDVI) data were obtained at monthly intervals between January 2017
and June 2020 for MODIS tiles ‘h21v08’ and ‘h21v09’ from the MODIS-
Terra MOD13Q1 product, a 16-day vegetation index composite with a spa-
tial resolution of 250 m. The NDVI, an indicator of the vegetation vigour
and health, data was then used to generate the C factor value image for
the study area using Eq. (8):

C ¼ −NDVIþ 1ð Þ=2ð Þ (8)

The P factor accounts for control practices that diminish the erosion poten-
tial of runoff by their influence on drainage patterns, runoff concentration,
runoff velocity and hydraulic forces exerted by the runoff on the soil surface
(Renard et al., 1991). Typically, P factor values close to 0 indicate good conser-
vation practice such as terracing, contour tillage, and permanent barriers or
strips reducing the overall risk of erosion, whilst values approaching 1 indi-
cates poor conservation practice. Due to the lack of data regarding conserva-
tion practices in the study area, the RUSLEmodel was runwith a P factor of 1.

3. Results and discussion

3.1. Soil erodibility factor (K)

The K factor values in theWinamGulf catchment ranged between 0.008
and 0.045 t ha h ha−1 MJ−1 mm−1, with complex spatial distribution and
Fig. 2. Soil erodibility (K) factor in th
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varying degrees of erodibility within the study area (Fig. 2). The highest K
factor values (0.045 t ha h ha−1 MJ−1 mm−1) correspond with mountain-
ous areas, including Nandi Hills in the Nyando sub-basin and the Gwassi
Hills in Homa Bay County, located on the Southern Shore of the catchment.
The highest degree of K factor heterogeneity occurs in the Kisumu basin at
the centre of the catchment; however, the overall risk of soil erodibility in
this region remains low due to the topography.

3.2. Topographic factor (LS)

The LS factor values in the study area range from 0 to 38.3, with an av-
erage of 2.26 (Fig. 3). The study area is dominated by low LS values within
the Kisumu basin and land adjacent to the Winam Gulf, as they correspond
to flat open plains or wetlands. However, within these areas of low LS
values, large river channels have significantly higher LS values due to chan-
nel morphology and changes to the riverbank slope (Magesh and
Chandrasekar, 2016). Moderately higher LS factors are located to the east
of the catchment. The highest LS values are located within the Nandi
Hills, Mt Homa, and the Gwassi Hills located on the Southern Shore of
the Gulf. All of these areas have steep slopes pertaining to the high LS
values.

3.3. Rainfall erosivity factor (R)

The R factor showed notable spatial variation with clear seasonal and
annual changes to the R factor in the Winam Gulf catchment (Fig. 4).

The R factor value in the study ranges from 92.85 to 180.55 MJ mm
ha−1 h−1 month−1. During the rainy season months, the R factor signifi-
cantly increased compared to dry season months, with the largest R factors
typically occurring in April of each year. The trend between themeanR fac-
tor (MJ mmha−1 h−1 month−1) and soil erosion rate (t ha−1 month−1) in
the Winam Gulf over the study period is shown in Fig. S1. Previous assess-
ments of intra-annual soil erosion dynamics have shown that the R factor is
the most influential aspect of the RUSLE model (Polykretis et al., 2020;
Schmidt et al., 2016). However, in this study, no correlation (r = −0.09,
p = 0.53) was associated between the R factor values and the mean
monthly soil erosion rate in the Winam Gulf (Fig. S2). By using a modified
e Winam Gulf catchment, Kenya.



Fig. 3. Topographic (LS) factor in the Winam Gulf catchment, Kenya.
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dynamic version of the RUSLE model, Gianinetto et al. (2019) were able to
differentiate large seasonal soil erosion variability in the Italian Alps. They
conducted sensitivity analysis and indicated that whilst the R factor has the
highest impact on the potential soil erosion risk, their pixel-based Pearson's
correlation between soil erosion and the R factor was an uncorrelated var-
iable, as replicated in the present study.

3.4. Cover management (C) factor

The C factor analysis performed in this study visualises the dynamic sea-
sonal trends with phases of abundant and fractionated or absent vegetation
cover over consecutive years. The dynamic C factor assessment presented
here provides key information when determining the presence of soil ero-
sion hot spots, as this process is accelerated on uncovered or bare soil.
Low C factor values (<0.15) correspond with areas of vegetation cover
and a reduced risk of soil erosion, whereas higher values indicate bare/un-
covered land with a greater susceptibility to soil erosion (Fig. 5).

During the long rainy season from March to May, vegetation cover in-
creases with a significant reduction (p < 0.05) of the mean C factor within
the catchment (Table S3). The increased vegetation cover that was initiated
by the rains begins to degrade across the catchment throughout the subse-
quent dry season (from June to September), and as crops were harvested at
the end of the growing season. The increased C factor values (reduction in
vegetation cover) extend from the Kisumu basin, an area that typically re-
ceives the warmest temperatures in the catchment, to the east of the Gulf.
Fig. 4.Monthly rainfall erosivity (R) factor from January 20
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Areas to the south and east of the study area (in the Sondu sub-basin) are
relatively resilient regions to seasonal changes, as they are dominated by
larger forested areas. Following the warmer temperatures from December
to February, the highest C factor values occur in January and February,
most noticeably in January 2017 and 2018. The extent of this is highly in-
fluenced by the variability of the short rainy season in October, leading to
an increased risk of erosion. Our results show that soil erosion rates are in-
fluenced by seasonal changes to land cover. Gianinetto et al. (2019) re-
ported that the use of multi-temporal satellite data for calculating C factor
values highlighted an increased erosion risk in autumn/winter compared
to spring/summer in the Italian Alps. The application of dynamic
satellite-derived data can increase the spatial resolution of C factor values
leading to improved accuracy of the estimates of soil erosion at regional
and local scales, particularly where vegetation is the predominant land
cover (Gianinetto et al., 2019). The relationship between C factor values
and mean soil erosion (t ha−1 month−1) in the Winam Gulf from January
2017 to June 2020 is shown in Fig. S3. There is a strong positive relation-
ship (r = 0.85, p ≤ 0.001) between the mean C factor and soil erosion in
the Winam Gulf (Fig. S4). Panagos et al. (2014a) investigated changes to
the risk of soil erosion in Crete, Greece using dynamic R and C factors. In
their study, the rainy season in Crete (October to January) accounted for
80% of the annual soil erosion on the island. More recently, in the Kyrgyz
mountain grasslands, Kulikov et al. (2016) observed that the highest poten-
tial soil erosion riskwas due to the combined influence of highC factors and
simultaneous high R factors. These results stress the importance of seasonal
17 to June 2020 in the Winam Gulf catchment, Kenya.



Fig. 5.Monthly cover management (C) factor from January 2017 to June 2020 in the Winam Gulf catchment, Kenya.
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erosion assessments for the identification of erosion hotspots and the sensi-
tivity of RUSLE based models to the status of vegetation cover.

The relationship between the R factor (MJmmha−1 h−1 month−1) and
the C factor in the Winam Gulf over the study period is shown in Fig. S5.
The negative trend between the R factor and C factor (r = −0.60,
p≤ 0.001) (Fig. S6) highlights the response of vegetation to increase rain-
fall. Interestingly, this trend is stronger in the dry season (r = −0.72,
p ≤ 0.001) compared to the wet season (r = −0.18, p = 0.43) (Fig. S6).
Our results support previous assessments of the spatio-temporal correlation
between NDVI values and precipitation in the Central Asian region, which
indicated time-delayed correlations attributable to vegetation dynamics
during growing seasons (Gessner et al., 2013).

3.5. Implications of dynamic soil erosion risk evidence for land management
decisions

All RUSLE model factors were integrated using the formula outlined
in Eq. (2) and soil erosion maps were created with a spatial resolution of
30 m, representing the loss of soil (t ha−1 month−1), between January
2017 and June 2020 (Fig. 6). The risk of soil erosion ranges from <0.5
to >5 t ha−1 month−1. Several hotspots were identified within the
catchment area; these are typically dominated by steep topography, in-
cluding the Nandi Hills in the Nyando sub-basin and the Gwassi Hills on
the Southern Shore, and have consistently elevated soil erosion risks
compared to the relatively flat Kisumu basin, regardless of seasonal
changes to R and C factors. Throughout the study, the average soil ero-
sion loss rate for the catchment was 9.63 t ha−1 year−1, which would
hypothetically equate to a total eroded soil mass of 10.71 Mt year−1

in the Winam Gulf catchment area. Within the sub-basins, the average
soil erosion was 9.69, 12.29, 7.94 and 10.73 t ha−1 year−1, in the
Northern Shore, Nyando, Sondu, and Southern Shore, respectively.

Assessing soil erosion with dynamic R and C factors is critical for deter-
mining the extent to which changing climatic conditions influence soil ero-
sion, and the potential impact on the socioeconomic stability of subsistence
Fig. 6.Monthly soil erosion risk from January 2017 to
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farming communities in Sub-Saharan Africa. The results of this study high-
light that the greatest soil erosion rates occur between February and April
(0.95 t ha−1 month−1, Table S3), with additional increased risk in October
following drier periods and the short rains. In contrast, between May and
August, there is a significantly reduced risk (average soil loss 0.72 t ha−1-

month−1) due to the low rainfall erosivity and increased vegetation
cover as a result of the long rainy season. These results demonstrate the
lag between rainfall and vegetation growth originally illustrated by
Kirkby (1980). These results highlight that the most vulnerable period for
erosion is the early part of the wet season when rainfall intensity is increas-
ingwith insufficient vegetation growth to protect the soil; as such, peak ero-
sion rates precede peak rainfall. Whilst the validation of soil loss models
with in-situ plot-scale measurements is desirable it is often constrained by
the absence of long-term plot-scale measurements for different land cover
types (Fenta et al., 2020). Moreover, plot-scale measurements may be bi-
ased due to the highly heterogeneous nature of soil erosion, measurement
uncertainty or failure to accurately capture soil loss at the landscape scale
(Alewell et al., 2019). Despite these challenges, the modelled RUSLE-
based estimated mean soil loss rates in the present study are within the
range of soil loss rates reported by other studies based on plot-scale mea-
surements in Kenya (Angima et al., 2000; Kinama et al., 2007). Further-
more, the RULSE model estimated soil erosion rates in this study were
validated against previous studies performed in the same region. The re-
sults of our study yielded similar predictions to those published by Fenta
et al. (2020) who was assessing water and wind erosion risks in the East
Africa region. However, additional plot studies are required due to the un-
certainty associated with future seasonal weather patterns. Recent climate
projections predicted an increasingly vigourous hydrological cycle that
could increase global water erosion by +30 to +66%, with some of the
most severe impacts affecting Sub-Saharan Africa (Borrelli et al., 2020).
Maeda et al. (2010) investigated the potential impacts of climate change
on soil erosion in the Kenyan Eastern Arc Mountains and reported that
the highest risk of erosion occurred in April and November, associated
with higher rainfall during these months. Using a Monte Carlo simulation
June 2020 in the Winam Gulf catchment, Kenya.
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and synthetic precipitation datasets, Maeda et al. (2010) concluded that
there was the possibility of an increased risk of erosion in regions with an
elevation greater than 1000 m a.s.l. where precipitation rates are histori-
cally higher and experience much higher erosion risk, especially in April
and November. Due to the complexity andmultifaceted nature of determin-
ing soil erosion risk, Maeda et al. (2010) disregarded the impact of dynamic
vegetation cover in agricultural areas in their model, which can act as a
buffer against the impact of rainfall and soil erosion.

Meusburger et al. (2012) and Schmidt et al. (2016) have previously
assessed the effect of combined dynamic R and C factors which can amplify
the risk of soil erosion. The overall effectiveness of a crop reducing erosion
risk depends largely on how much of the erosive rain occurs during those
periods when the crop is absent and provides little to no protection
(Wischmeier and Smith, 1965). Months with, and following, the highest
rainfall usually coincide with periods of maximum vegetation vigour, and
the months of lower rainfall with the seeding and harvest. In the present
study, evidence of this is demonstrated in May, which on average receives
some of the highest rainfall and associated R factors, yet the risk of erosion
is significantly decreased due to lower C factors. The decreased C factor is
resulting from the high rainfall in April, which promotes greater crop
growth and vegetation cover, thus limiting the erosion risk. In contrast,
January and February, which on average have the lowest R factors, have
erosion risks that are attributable to the high C factor and lack of
vegetation.

There are numerous benefits of assessing soil loss rates with monthly
temporal resolution compared to annual rates. Comparing the pseudo
average monthly soil loss rate of 0.80 t ha−1 (Table S3) against the calcu-
lated monthly loss rates would lead to an underestimation of soil loss in
dry seasons and an overestimation during the rainy seasons. The higher
temporal resolution achieved by monthly modelling provides greater
knowledge regarding particularly vulnerable months (January to April),
and can inform future strategies for targeted mitigation measures. In a re-
cent study quantifying soil losses in Kenya coastal region, Hategekimana
et al. (2020) suggested that areas with an annual average soil erosion
>10 t ha−1 year−1 should be prioritised in soil conservation plans. Based
on their recommendations, a significant area of the Winam Gulf would re-
quire prioritising, particularly in the Nyando and Southern Shore sub-
basins.

3.6. Limitations, uncertainties and needs

The primary limitation to this study was the omission of the analysis of
the management practice (P) factor. Gianinetto et al. (2019) and Maeda
et al. (2010) have previously stated that the assessment of soil erosion
risk could be further refined by introducing a parametrisation for the P fac-
tor. The application andmaintenance of support practice measures can sub-
stantially decrease the risk of soil erosion. Conservation practices such as
contour farming, strip cropping, or terracing can reduce RUSLE estimated
soil loss by a factor of 2, 4, and 10, respectively (Schürz et al., 2020). In
practice, Terranova et al. (2009) in Calabria, Italy, and Feng et al. (2010)
in the Loess Plateau, China, have demonstrated that soil conservation mea-
sures can significantly decrease the risk of soil erosion. Hence, further in-
vestigation is required to evaluate the potential of using conservation
farming practices that mitigate the impact of soil erosion in the Winam
Gulf, with particular emphasis on reducing the risk of erosion in the region.
It is important to acknowledge the uncertainty contribution in the soil ero-
sion calculations derived from using precipitation, DEM, soil, and NDVI
data with different spatial resolutions. Soil erosion modelling is inherently
influenced by the accuracy of these variables, and input data withfiner spa-
tial resolutions yield more accurate risk assessments (Guo et al., 2021).
Whilst the RUSLE model has its limitations, it is widely used due to its rel-
ative simplicity and robustness. This approach is capable of facilitating soil
conservation policies at national and multinational scales as local method-
ologies may suffer from poor consistency and high levels of uncertainty
(Panagos et al., 2016; Rellini et al., 2019). Notwithstanding the limitations,
the information provided in this study has identified areas in the Winam
7

Gulf catchment, primarily within the Nandi Hills and Gwassi Hills, which
require further investigation to assess the full extent of soil erosion. Field-
based studies capable of incorporating existing conservation practices are
recommended in areas prone to significant soil erosion risk to determine
actual soil loss rates. This will aid decision-making enabling stakeholders
and policymakers to target specific management efforts for reducing soil
erosion.

4. Conclusion

The soil erosionmaps presented here provide thefirst assessment of ero-
sion risk withmonthly temporal resolution in Sub-Saharan Africa, consider-
ing dynamic rainfall and vegetation cover datasets. They enable the
quantification of soil erosion and provide information regarding spatio-
temporal patterns of soil loss due to water erosion in the Winam Gulf.
Our RUSLE model outputs showed that the mean annual gross soil loss by
water erosion is approximately 10.71 Mt year−1 with a mean soil loss
rate of 9.63 t ha−1 year−1. These results show that the highest risk occurs
between January and April, which coincides with periods of reduced vege-
tation cover and high rainfall. We demonstrated the need to assess soil ero-
sion with greater temporal resolution than annual assessments, due to
seasonal variability leading to the under and overestimation of soil erosion
by water in specific months. Moreover, as the effects of climate change on
precipitation patterns are projected to increase the risk of soil erosion a
greater level of understanding is essential to evaluate how to best imple-
ment soil conservation practices.
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