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Biomass of the schooling fish Rastrineobola argentea (dagaa) is presently estimated in Lake Victoria by acoustic survey following the simple
“rule” that dagaa is the source of most echo energy returned from the top third of the water column. Dagaa have, however, been caught in
the bottom two-thirds, and other species occur towards the surface: a more robust discrimination technique is required. We explored the
utility of a school-based random forest (RF) classifier applied to 120 kHz data from a lake-wide survey. Dagaa schools were first identified man-
ually using expert opinion informed by fishing. These schools contained a lake-wide biomass of 0.68 million tonnes (MT). Only 43.4% of identi-
fied dagaa schools occurred in the top third of the water column, and 37.3% of all schools in the bottom two-thirds were classified as dagaa.
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School metrics (e.g. length, echo energy) for 49 081 manually classified dagaa and non-dagaa schools were used to build an RF school classifier.
The best RF model had a classification test accuracy of 85.4%, driven largely by school length, and yielded a biomass of 0.71 MT, only c. 4% dif-
ferent from the manual estimate. The RF classifier offers an efficient method to generate a consistent dagaa biomass time series.

Keywords: artificial intelligence, big data, dagaa, Lake Victoria, machine learning, Rastrineobola argentea, school analysis, species identification,
stock assessment

Introduction
In recent years, and parallel to the development of ever-cheaper

computer-processor power, machine learning and artificial intel-

ligence (AI) methods have been applied increasingly in ecology to

ask “big questions” of “big data”. These methods have delivered

promising results in species identification, biodiversity mapping

and animal behaviour studies (Christin et al., 2019). Active

acoustic data collected during fish stock assessment surveys are a

form of big data. A typical month-long survey can gather tens of

gigabytes of data per narrowband frequency and, with the in-

creasing inclusion of broadband echosounders and multibeam

sonars in fish stock assessment surveys, this will increase by at

least tenfold per vessel in the future (Demer et al., 2017).

Multiple autonomous platforms including wave gliders (Bingham

et al., 2012; Greene et al., 2014) and saildrones (Mordy et al.,

2017; De Robertis et al., 2019) are increasing the temporal and

spatial coverage of fish stock monitoring, and the volume of data

now being collected in some ecosystems exceeds institutional ca-

pacity for manual processing. Machine learning methods can po-

tentially be utilized to automate data analysis pathways and, at

the same time, reduce human error-induced uncertainty in stock

biomass estimates.

During the analysis of acoustic survey data, visual scrutiniza-

tion—classification by eye of features on echograms [the two-

dimensional (2D) plots showing echo energy by depth and dis-

tance/time along track]—is often used to partition echo energy

between species, but results can be operator dependent. Efforts to

overcome this by the application of rigid “rules” can also be un-

satisfactory. Identification of Antarctic krill (Euphausia superba),

for example has been achieved by a simple “dB difference” ap-

proach that uses the difference in backscattering intensity be-

tween two frequencies as a diagnostic characteristic (Madureira

et al., 1993) but has in some areas of continental shelf been sus-

ceptible to erroneous inclusion of echoes from ice fish

(Channichthyidae; Fallon et al., 2016). In Lake Victoria, the silver

cyprinid (Rastrineobola argentea; known locally as “dagaa”) is

identified using a simple depth distribution rule that holds that

most of the backscattered echo energy from the top third of the

water column is from dagaa (LVFO, 2006). This approach—that

was incorporated in to the Lake Victoria acoustic analysis stan-

dard operating procedure (SOP; LVFO, 2012) in a period when

limited resources precluded anything more sophisticated—is,

however, known to be flawed: not all the fish obey the rule. Here,

we apply AI to the identification of echoes from schools of Lake

Victoria fish in an effort to illustrate an example of the potential

for AI in fisheries ecology and to improve the accuracy of stock

assessments for the lake.

The Lake Victoria fishery
Lake Victoria is the world’s largest tropical lake (68 800 km2).

Fisheries are vital for local food provision and for export

earnings and contribute 2–3% to the gross domestic products of

the lake’s three riparian states (Uganda, Kenya, and Tanzania).

Sustainable fisheries management is a regional priority, and there

is an aspiration to move towards ecosystem-based fisheries man-

agement (LVFO, 2018).

Dagaa are a small (maximum length c. 9 cm) pelagic zooplank-

tivorous fish (Wanink, 1999) native to Lakes Victoria, Nabugabo,

and Kyoga in East Africa. It is one of the few species in Lake

Victoria to remain abundant following the introduction of the

Nile Perch (Lates niloticus) in the 1950s (Goudswaard et al., 2008;

Sharpe and Chapman, 2014). Dagaa make up �60% of the total

annual Lake Victoria catch, with �0.6 million tonnes (MT) being

landed in 2015 (Mangeni-Sande et al., 2019). Typically 100–

500 kg of dagaa can be caught per boat per night using small seine

nets and light attraction (LVFO, 2016a), and �18 700 boats target

dagaa (LVFO, 2016b). Dagaa fishing employs �70 500 fishermen,

and �16 500 women are engaged in the labour-intensive drying

of the catch (Okedi, 1981; LVFO, 2016b); fish are spread out for

drying—often simply on the sand—in the sun and are turned

regularly by hand. Dagaa are sold into the local and regional mar-

kets and consumed almost exclusively in southern and eastern

Africa: dagaa is a cheap source of animal protein for the rural

poor. High-quality dried fish are sold for human consumption,

and lower-quality products (�70% of the total catch) are used

for animal feed (Odongkara et al., 2016).

The emphasis of research on fisheries in Lake Victoria has to

date been largely on Nile Perch because of its importance in gen-

erating foreign currency revenue (US$300 million; LVFO, 2018).

However, for economic and ecological reasons, it is essential to

establish effective management for sustainable exploitation of

other species as well, including dagaa (Kolding et al., 2019), and

accurate estimates of stock biomass are an essential prerequisite

for that.

Present estimates of dagaa biomass
Estimates of dagaa stock biomass are determined from acoustic

data collected during bi-annual lake-wide fish stock assessment

surveys. Dagaa, which are superficially similar to anchovy, are an

obligate schooling pelagic species that possess swim bladders: as

such dagaa is highly suitable for acoustic assessment. During day-

light, dagaa aggregate into small schools (a few metres in length

and height) that appear as distinct needle-like features in echo-

grams when observed at typical survey setting, i.e. vessel speed of

between 8 and 10 knots and ping intervals of between 0.2 and

0.5 s (Getabu et al., 2003). Dagaa are presently evaluated by echo

integration of 120 kHz data from the top one-third of the water

column. It is assumed that all echo energy remaining in the top

third of the water column after single-target detections (which

are all attributed to Nile Perch; Kayanda et al., 2012) have been

removed arises from dagaa, and only dagaa. It is clear though,

even from just a cursory reference to Getabu et al. (2003), that

this is a false assumption: dagaa occupy a broader depth range

than just the top third, and other species are known to inhabit
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the top third. A new method for dagaa identification is needed

urgently to improve the accuracy of stock assessment and, even-

tually, to improve the management that stems from the biomass

estimate. Since the objective of the acoustic survey is to allocate

all energy correctly, improving dagaa allocation will lead to

improvements in the assessment of other species as well.

Fish school analysis using acoustic data
In order to establish reliable and reproducible methods to identify

and discriminate species detected acoustically during surveys, we

need first to identify acoustic characteristics, or sets of character-

istics, that are unique to particular target species and that are

therefore diagnostic. For schooling species, these characteristics

can be at the school level (rather than at the level of the individual

fish), and the physical shape, echo intensity, frequency response

and behaviour of schools of different fish species can be diagnos-

tic (Coetzee, 2000; Reid et al., 2000; Lawson, 2001; Bertrand et al.,

2008; Fernandes, 2009; Paramo et al., 2010). Since the develop-

ment of standard methods for extracting school characteristics

(Barange, 1994; Coetzee, 2000; Reid et al., 2000; Diner, 2001),

analyses have been conducted to study the shapes and behaviours

of schools of many species of fish (Lawson, 2001; Fernandes,

2009; Fallon et al., 2016) and the swarm characteristics of krill

(Tarling et al., 2001; Klevjer et al., 2010; Cox et al., 2011). Such

analyses are now being used to aid species identification, and

hence to reduce uncertainty around estimates of fish stock bio-

mass (e.g. for herring and mackerel; Fernandes, 2009).

Schools of a specified minimum size (horizontal and vertical

dimensions) and echo intensity can be extracted automatically

from acoustic observations [both 2D observations from conven-

tional vertical echosounders and three-dimensional (3D) observa-

tions from multibeam sonar surveys], and school metrics

pertaining to morphology, position, and acoustic scattering prop-

erties (e.g. echo energy across different frequencies) can be col-

lated to characterize schools (Barange, 1994). Performing such an

automated school extraction process for a typical month-long

Lake Victoria vertical echosounder survey results in over 100 000

extracted schools. These include schools of dagaa, small (<10 cm)

Nile Perch, and haplochromine cichlids (aggregations of the pe-

lagic crustacean Caridina nilotica are also apparent). More than

25 acoustic surveys have been conducted on Lake Victoria over

the past 20 years (Taabu-Munyaho et al., 2014), and school data

within them offer an incredibly valuable resource for examining

potential change as a function of, for example, fishing pressure

and environmental variability (Brierley and Cox, 2010, 2015).

Fundamental to these types of analyses and indeed to fish stock

assessment are consistent and reproducible methods to identify

and discriminate species, including dagaa. It is impractical to at-

tempt to use manual visual scrutinization to discriminate dagaa

schools from the more than 2.5 million estimated schools now

potentially accessible from the combined 25-survey database.

Therefore, the main objective of the work reported here was to

develop a robust and consistent approach that was both cost- and

time-effective, and that used machine learning/AI to perform the

automatic classification of dagaa schools (e.g. Fernandes, 2009;

Cox et al., 2011; Fallon et al., 2016; Escobar-Flores et al., 2019).

Machine learning
It is now common practice to use machine learning techniques to

classify data (Malde et al., 2019). Features isolated in acoustic

survey data, such as schools, scattering layers, and single targets,

have been classified using a wide range of machine learning tech-

niques including mixture models (Fleischman and Burwen, 2003;

Escobar-Flores et al., 2018), artificial and convolutional neural

networks (Haralabous and Georgakarakos, 1996; Simmonds

et al., 1996; Korneliussen et al., 2016; Brautaset et al., 2020), deci-

sion trees, random forests (RFs), and boosted regression trees

(Fernandes, 2009; D’Elia et al., 2014; Fallon et al., 2016; Escobar-

Flores et al., 2018, 2019), discriminant-function analysis and

principal components analysis (Nero and Magnuson, 1989;

Scalabrin et al., 1996; Brierley et al., 1998; Lawson, 2001), and k-

means clustering (Tegowski et al., 2003; Proud et al., 2017).

Ensemble tree methods (e.g. RF and boosted regression trees)

have only been adopted in the past decade but have been found

to be particularly good (having high accuracy) for classifying fish

schools (Fernandes, 2009; D’Elia et al., 2014; Fallon et al., 2016).

Objective of the present study
The objective of this study is to develop a robust, automated

method to identify echoes from dagaa schools in echosounder

data collected during Lake Victoria fish stock assessment surveys.

Previous work (Getabu et al., 2003; LVFO, 2006), and a large ac-

cumulation of local experience, suggests that dagaa form schools

that have a distinct needle-shaped (vertically tall, horizontally

narrow) appearance in underway echograms. We set out first to

confirm that needle-shaped acoustic features are in fact dagaa

schools, and then to develop a machine learning method to iden-

tify dagaa schools amongst all extracted schools. In this study, we

make no attempt to classify aggregations of the other common

Lake Victoria pelagic species because there is presently not

enough ground-truth data (e.g. trawl data) to underpin such an

analysis.

Methods
Determining the characteristics of dagaa schools
We conducted target fishing during an October 2019 field study

in a coastal region (c. 40 m lakebed depth) of the Ugandan sector

of the lake. We fitted a standard Lake Victoria bottom trawl with

a fine-mesh cod-end cover and used this to target needle-like and

non-needle-like pelagic echogram features. The net had an esti-

mated vertical opening of <10 m, and was fished at 4 knots for

15 min at each sampled depth. Catch samples were sorted into

species groups and the individuals in each group were counted,

measured and weighed. The acoustic data recorded during each

trawl were resampled to typical survey settings (vessel speed ¼ 9

knots and ping interval ¼ 0.2 s) to reconstruct echograms that

would have been produced had the fished schools been encoun-

tered at typical survey speed.

Acoustic survey data collection
Acoustic and environmental data collected during the November

2015 fish stock assessment survey in Lake Victoria (LVFO, 2015)

were used to build a dagaa school classifier. That survey was se-

lected because, when this work began, it was the most recent sur-

vey that had been processed. The survey was conducted from

research vessel (RV) Victoria Explorer between 1 and 29

November (including 4 days breaks for reprovisioning). It cov-

ered c. 4 000 km of survey track over most of the lake, across a

range of lakebed depths between 2 and 70 m. Most of the survey

was conducted in daylight hours, and sampling effort was highest
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in the more productive inshore regions of the lake (Figure 1). The

night-time vertical distribution and echogram appearance of

dagaa schools may differ from the daytime distribution and form,

and so night-time observations were excluded from the analysis:

only acoustic data collected between sunrise and sunset (exclud-

ing astronomical twilight) were analysed. Acoustic data were col-

lected using two hull-mounted Kongsberg (Horten, Norway)

Simrad EK60 scientific echosounders operating at 70 and

120 kHz, both with a 7� nominal beam width. A pulse length of

0.256 ms was used, with a ping interval of 0.2 s. A standard split-

beam echosounder calibration (Foote et al., 1983; Demer et al.,

2015) was carried out prior to the survey. In this study, we use

and report only 120 kHz data because one objective of the work is

to develop a route for the reanalysis of historic surveys, and early

surveys only used 120 kHz. However, at an early stage of this

study, we investigated the benefit of including 70 kHz data as well

but found no improvement in decision tree-based school classifi-

cation using two frequencies.

Hydrographic measurements were taken at predefined stations

(N¼ 58, see Figure 1) using a Sea and Sun Conductivity,

Temperature, and Depth (CTD) probe and a YSI 650 multi-

parameter sonde to measure temperature (�C), dissolved oxygen

concentration (DO, mg l�1), conductivity (lS cm�1), pH, turbidity

[Formazin Turbidity Units (FTU)], and chlorophyll a concentration

(lg l�1).

School extraction and manual classification
The “Schools Detection Module” in Echoview software (v9;

Myriax, Hobart, Tasmania) was used to extract all schools from

the echosounder data. Before running the school detection algo-

rithm, echosounder data were thresholded at �54 dB re 1 m�1

(i.e. any samples below this value were excluded from analysis).

Recalling that Sv¼ 10� log10(10(TS/10)� packing density), the

threshold was set with the consideration of an expected mean tar-

get strength (TS) at 120 kHz of dagaa with a mean length of

5.3 cm of �57.6 dB re 1 m2 and a very conservative minimum

school packing density of c. 2 fish per m3 (Tumwebaze, 2003).

The school detection algorithm [Shoal Analysis and Patch

Estimation System (SHAPES)] is based on the work of Barange

(1994) and Coetzee (2000) and requires a number of parameters

to be set. From preliminary analysis, local prior knowledge, and

the work of Getabu et al. (2003), dagaa schools were perceived to

be characteristically very narrow (a few pings) relative to vertical

extent (tens of samples) in echograms, dense, and compact (i.e.

without any vacuoles or holes), and so the SHAPES algorithm

parameters were set conservatively to ensure that all schools of

this nature, as well as schools with the more usual rounded echo-

gram appearance, would be captured. Thus, all school detection

parameters, except for the horizontal linking distance, were set to

their minimum possible values, i.e. the minimum candidate

height, minimum candidate length, minimum school height,

minimum school length, and vertical linking distance were all set

to 1 m. The maximum horizontal linking distance was set to 5 m

to ensure that, given the vessel speed and ping rate, consecutive

pings could be linked. The SHAPES algorithm was run across the

entire acoustic dataset. It identified schools with a diversity of

forms, from small compact needle-like schools typical of dagaa

(see Figure 2) to large amorphous schools hundreds of metre in

length that were layer like in appearance. The expert view is that

Figure 1. Map of Lake Victoria, East Africa, showing the cruise track
and the CTD stations (solid points) for the November 2015 fish
stock assessment survey.
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Figure 2. Echoview-generated 120 kHz echogram of automatically
detected and manually labelled schools (grid size 10 by 10 m). Three
dagaa schools are labelled and have the characteristic needle-like
echogram appearance (vessel speed ¼ 9 knots and ping interval ¼
0.2 s). In this example, the lakebed is at 32 m and the top third line
(that under the existing standard operating procedure would
demark the lower limit of the dagaa habitat) is at 10.7 m: the dagaa
schools extend deeper than the top third line and the non-dagaa
schools can be seen above the top third line, well illustrating the
inability of depth alone to differentiate dagaa and non-dagaa.
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these layers are comprised of haplochromine cichlids and small

Nile Perch (<10 cm). Any “schools” that were longer than 100 m

in length were deemed to be scattering layers (Proud et al., 2015)

and were excluded from further analysis. All remaining schools

were examined manually and categorized by eye (visual scrutini-

zation) as either dagaa or non-dagaa.

School metrics (Table 1) were exported from Echoview.

Environmental variables (Table 1) were ascribed to each school as

those at the nearest CTD station by distance.

Using machine learning to build a school-based classifier
An RF model was built using a subset of the manually identified

schools. During the survey, on-transect vessel speed varied be-

tween 6 and 13 knots, but c. 84% of effort was between 8 and 10

knots (which is the typical range of survey speeds across all his-

toric acoustic surveys on the lake). Historic manual classification

has identified needle-like echo traces as dagaa schools, but the as-

pect ratio (height to width) of echogram features is of course a

function of vessel speed and ping rate. This raises the possibility

that schools detected at slow speed would be rejected by eye as

dagaa because they would appear too rounded: this is an impor-

tant illustration of one of the weaknesses of visual classification

methods. To avoid incorporating any potential speed-related bias

in the RF model of dagaa school characteristics, only visually clas-

sified schools detected in the range of usual survey speeds (8–10

knots) were used to build the RF model.

Following the standard RF protocol (Breiman, 2001), schools

remaining after speed filtering were split randomly into a training

dataset (80% of data are typically used to train an RF classifier,

and we adhered to that) and a test dataset (20% of data are typi-

cally used to test RF classifiers). The R packages “caret”, “party”,

and “trees” (Strobl et al., 2008, 2009; Kuhn, 2019; Ripley, 2019)

were used to build RF models. RF algorithms have two tuning

parameters: these are mtry, the number of variables to select ran-

domly from the total available list of school metrics (Table 1)

when splitting data at each node in a tree, and ntrees, the number

of trees to build. In this study, mtry was initially set to 4 and

ntrees to 500 (these are the default values), but a range of different

mtry and ntrees values was also used to assess their impact on RF

classification accuracy.

We used repeated (three times) tenfold cross-validation to as-

sess the accuracy of the RF (Stone, 1974; Breiman, 2001). This

validation process involved splitting the training dataset into ten

equally sized subsets (or folds), building the RF model using a

dataset containing nine of the tenfolds, and then validating the

model on the other remaining fold. This process was repeated ten

times such that each fold acted as the validation dataset once.

This process was repeated three times (with random, so probably

different, tenfold splitting on each of the three occasions), and

the accuracy of the model was calculated by taking an average

over the resultant 30 accuracy values (3� 10 folds).

Assessment of the RF model
The RF model was assessed using the mean and standard devia-

tion of the training accuracy, and the kappa statistic j (the pro-

portion of classification agreement beyond that expected to occur

by chance, where j¼ 0 is suggestive of classification only match-

ing what would be expected by random chance assuming a bino-

mial distribution; Cohen, 1960). RF models are difficult to

interpret, since they are typically comprised of hundreds of fully

grown decision trees. In the majority of cases, RF models are

assessed by accuracy metrics and the importance of each predic-

tor (each school metric in this case) is assessed by single specific

or multiple so-called “importance metrics” (Breiman, 2001).

Here, we use conditional variable importance (Strobl et al., 2008)

to assess each predictor’s ability to discriminate between target

classes (i.e. dagaa or non-dagaa): unlike other importance meas-

ures (e.g. mean decrease in accuracy), conditional variable impor-

tance is robust against correlated variables (Fallon et al., 2016),

e.g. water temperature and school depth are likely to be

correlated.

Dagaa stock biomass estimates
The RF model, which was built using a subset of the extracted

schools, was used to classify the entire dataset of schools from the

2015 survey. School-based estimates of dagaa stock biomass were

then calculated using both the manually classified schools and the

Table 1. School metrics used to build an RF model to classify detected schools

School metric Description Unit

Length Mean length of school corrected for beam width m
Depth Mean depth of school m
Height Mean height of school corrected for pulse length m
Image compactness School perimeter squared/(4�p� school area); for a perfectly circular school this

would be 1
Unitless

NASC School NASC is an historic acoustic unit that is the average amount of echo energy
produced by the school per m2 of lake surface, scaled up to an area of 1 nautical
mile squared

m2 nmi�2

Lakebed depth Depth of lakebed as detected by the 120 kHz echosounder m
Temperature Measured value at school depth obtained from the closest CTD station �C
DO Measured value at school depth obtained from the closest CTD station mg l�1

pH Measured value at school depth obtained from the closest CTD station Unitless
Turbidity Measured in Formazin Turbidity Units. Measured value at school depth obtained

from the closest CTD station
FTU

Chlorophyll a concentration Measured value at school depth obtained from the closest CTD station lg l�1

Longitude Taken from vessel GPS Degrees East
Latitude Taken from vessel GPS Degrees North
Time of day Decimal time, calculated from vessel GPS Hours
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RF classified schools. Echo energy from schools classified as dagaa

(either manually or via the RF model) was converted into bio-

mass following the Lake Victoria Fisheries Organization SOP for

stock assessment (LVFO, 2012). Accordingly, mean dagaa nauti-

cal area scattering coefficient (NASC) values were determined for

each of the 18 SOP-defined lake areas, which are split by country

(3; Uganda, Tanzania, and Kenya), lake quadrant (4; NW, NE,

SE, SW), and depth (3; “inshore” <10 m; “coastal” 10–40 m, and

“deep” >40 m). These 18 mean NASC values were converted to

biomass density (T m�2) using the mean dagaa TS per kg (TSkg,

i.e. the amount of 120 kHz echo energy produced by 1 kg of

dagaa) of �29.4 dB kg�1 (Tumwebaze, 2003). Biomass densities

were multiplied by associated areas to scale to biomass (T) in

each of the 18 areas, and these were summed to give a whole-lake

value. This process was repeated 1000 times, resampling with

replacement dagaa school NASC values by area on each iteration

(i.e. bootstrapping), and 95% confidence intervals were calculated.

Results
A total of 120 181 schools (larger than 1 m in length and height)

were detected by the SHAPES algorithm in the echosounder data.

Schools in “bad data” regions (e.g. sections of transect with no

GPS) and schools detected at night were removed reducing the

useable dataset to 115 778 schools.

Confirmation that needle-like echo traces are dagaa
schools
It is generally believed, based on the work of Getabu et al. (2003)

and on accumulated local expert opinion, that schools with a

needle-like appearance in 120 kHz underway echograms are dagaa

schools. To this end, needle-like schools were fished during an

October 2019 field study (Figure 3 and Table 2).

A total of 93 schools were detected acoustically during Haul 1

(near surface), and 99.5% of the total catch by number (399 fish)

was dagaa. The only non-dagaa component of the combined

catch was two haplochromine cichlids, each just 4 cm long (the

mean length of dagaa was c. 3.8 cm). These cichlids would have

contributed c. 1% to integrated trawl echo energy (estimated us-

ing haplochromine TS¼ 20logL� 66.65; LVFO, 2015). Dagaa

and needle-like schools were also present in Hauls 2–5 along with

similar numbers of haplochromines, conforming with the view of

Getabu et al. (2003) that dagaa are not restricted to the near-

surface layer (Table 2). However, since catch obtained from

Hauls 2–5 was likely contaminated during time spent at the sur-

face whilst deploying and recovering the net, these observations

were not quantitatively assessed.

Manual classification of schools using the lake-wide 2015
survey data
A total of 56 079 of the 115 778 schools passed for manual visual

identification were classified as dagaa. The remaining 59 699

schools, judged by experts to be non-dagaa, would have con-

tained haplochromines, Tilapia spp., small Nile Perch (<10 cm)

and other species, but the present state of knowledge is
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Figure 3. Example dagaa trawl (Haul 1) during the October 2019
field study in Ugandan waters aboard the RV Ibis: (a) 120 kHz
echogram showing needle-like schools, which are commonly
believed to be dagaa schools; (b) catch from needle-like schools
being sorted; and (c) dagaa, which comprised >99% of the catch by
number.

Table 2. Net haul and catch information (numbers of individual fish)

Haul Wire out (m) Headline depth (m) Dagaa (N) Haplochromines (N) Needle-like schools (N)

1 25 6 399 2 93
2 50 11 288 1 16
3 75 26 73 86 0
4 100 30 86 103 0
5 125 34 68 22a 0

The water depth was 40 m.
aThe decapod Caridina nilotica was also present, in small number, in the catch from Haul 5.

Table 3. Distributions of dagaa and non-dagaa schools by depth according to expert manual classification, and median lake-wide biomass
estimates (bootstrapped 95% confidence intervals given in square brackets)

Depth zone Dagaa schools (N) Non-dagaa schools (N) Total schools (N) Dagaa school biomass (T)

Top third 24 357 6 403 30 760 370 701 [361 388–379 408]
Bottom two-thirds 31 722 53 296 85 018 312 707 [301 747–324 400]
Total 56 079 59 699 115 778 683 107 [668 957–697 721]
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insufficient to classify them by species; that will be the task for a

subsequent project.

Only 43.4% of the manually classified dagaa schools occurred

in the top third of the water column, but 89.3% of non-dagaa

schools occurred in the bottom two-thirds: together these pro-

portions give the “top third” method an overall school classifica-

tion success rate by number of c. 72.6% (see Table 3). Dagaa

school biomass was found to be almost equally distributed be-

tween the top third and bottom two-thirds of the water column.

The dagaa stock biomass estimate arising from the manual classi-

fication was 0.68 MT (see Table 3).

RF model
The 49 081 manually classified schools remaining after filtering

for vessel speed were split into a training dataset (13 547 dagaa

schools, 25 718 non-dagaa schools) and a test dataset (3 319

dagaa, 6 497 non-dagaa). The training dataset was used to train

the RF classifier. An RF classifier was constructed using all 14

available school and environment metrics (Table 1). The default

values of mtry (4) and ntrees (500) produced the best model as

evaluated by model accuracy; other mtry and ntrees parameter

values were tested (mtry: 2–8 and ntrees: 200–2000) but provided

no improvement in accuracy. The RF model had a training classi-

fication accuracy of 85.0% (SD¼ 0.49%), a test classification ac-

curacy of 85.4%, and a j-value of 0.66 (SD¼ 0.011).

RF predictions
The RF model was used to classify all schools in the full dataset

of 115 778 schools (i.e. not just the schools that passed the

speed filter). Since school dimensions were determined from

GPS position, there were no speed-related artefacts in the auto-

matically extracted school metric values. Schools classified by

the RF model as dagaa were used to estimate lake-wide bio-

mass, and are summarised in Table 4. The RF-derived biomass

value differed by only 4.02% from the manual school classifica-

tion result (see Tables 3 and 4). The largest difference between

manual classification and the RF model classification was of

non-dagaa schools in the top third depth zone. The manual

scrutinization classified 1 814 more schools as non-dagaa. We

believe that this occurred when slow vessel speed served to

stretch observations of dagaa schools horizontally, giving them

a non-dagaa appearance in the echogram. The RF approach

takes school dimensions from GPS locations so is not “misled”

by variability in vessel speed.

Importance of different school metrics to overall RF
model effectiveness
Evaluating the importance of each school metric (Table 1) to

the RF model, regardless of any correlation between the metrics

(known as “conditional variable importance”), showed that

school length was the most important metric, followed

by school height, school NASC, school depth, school image

compactness, and lakebed depth (Figure 4). Environmental vari-

ables other than lakebed depth contributed very little to the

overall predictive power of the model, and when all environ-

mental information was removed, the overall RF accuracy re-

duced by only c. 1%. This suggests that, during the 2015 survey,

school structure was not influenced strongly by environmental

variability across Lake Victoria.

Table 4. Distributions of dagaa and non-dagaa schools by depth according to RF classification, and median lake-wide biomass estimates
(bootstrapped 95% confidence intervals given in square brackets)

Depth zone Dagaa schools (N) Non-dagaa schools (N) Dagaa school biomass (T)

Top third 26 171 (þ7.44%) 4 589 (�28.33%) 394 373 [385 006–403 609] (þ6.38%)
Bottom two-thirds 32 534 (þ2.56%) 52 484 (�1.52%) 315 853 [305 435–327 424] (þ1.01%)
Total 58 705 (þ4.68%) 57 073 (�4.40%) 710 547 [695 426–725 205] (þ4.02%)

Brackets indicate percentage change relative to manual classification.

Figure 4. Relative variable importance (conditional variable importance
normalized between 0 and 1) for school metrics used to build the RF
model.
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Figure 5. Violin plots, which show smoothed probability density, with boxplots overlaid, for important school metrics used in the RF model
to classify dagaa schools. Plotted school metrics are: (a) school length, (b) school depth, (c) school nautical area scattering coefficient (NASC)
value, (d) school height, (e) lakebed depth and (f) school image compactness. Black filled circles show distribution means.

1386 R. Proud et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/77/4/1379/5835268 by guest on 24 June 2021



School metrics
Distributions of the school metrics found to be important for

dagaa classification were plotted as violin (Hintze and Nelson,

1998) and box plots, displaying the first quartile (Q1), median

(M), third quartile (Q3), and probability density of each distribu-

tion (Figure 5). Dagaa school length (Figure 5a) (Q1¼ 2.88 m;

M¼ 4.23 m; Q3¼ 6.34 m) was found to be significantly different

to non-dagaa school length (Q1¼ 6.82 m; M¼ 11.63 m;

Q3¼ 20.87 m; Kolmogorov-Smirnov (KS) test: p< 0.001;

D¼ 0.53), a finding which provides quantitative support for the

descriptive picture painted by Getabu et al. (2003) of dagaa

schools as “needles”. Both dagaa and non-dagaa schools were

found across all lake strata (inshore, coastal, and deep—see

Figure 5b), but dagaa schools were typically found shallower in

the water column (Q1¼ 10.51 m; M¼ 17.63 m; Q3¼ 26.94 m)

than the non-dagaa schools (Q1¼ 16.97 m; M¼ 27 m;

Q3¼ 36.48 m), which is some limited endorsement of the simple

“top third” rule (but note that there are many dagaa schools in

deeper water that the third-rule does not capture). School heights

were similar between dagaa and non-dagaa schools (Figure 5d),

but image compactness values of dagaa (Q1¼ 10.02; M¼ 18.03;

Q3¼ 31.3) were significantly smaller (KS test: p< 0.001;

D¼ 0.38) than non-dagaa (Q1¼ 23.38; M¼ 40.29; Q3¼ 72.19),

i.e. in equidimensional x, y space, dagaa schools were paradoxi-

cally actually the more circle like in appearance: although appear-

ing as needle-like features in echograms, if the aspect ratio of the

image was to be set to 1:1, dagaa schools would in fact appear as

squashed circles with a median length and height of 4.23 and

1.68 m, respectively (see Figure 5).

Discussion
We have developed a new automated and standardized method to

classify schools extracted from Lake Victoria echosounder data as

either dagaa or non-dagaa using an RF model. The RF model had

a school classification accuracy of 85.4% as judged against a test

dataset of 9 816 manually classified schools. When used to classify

all detected schools, the RF model picked out schools that resulted

in a total lake-wide biomass of c. 0.71 MT, which was within c. 4%

of the biomass derived from schools classified manually as being

dagaa (0.68 MT): bootstrapped confidence limits for biomasses

arising from manual and RF classification overlapped.

Implications for fish stock management
The dagga biomass estimate reported here of c. 0.7 MT is likely to

be an underestimate for several reasons, such as: (i) since vertical

echosounders are used to collect the data, and because dagaa are

known to occupy shallow depths, some of the signal will be lost

in the acoustic near-field (approximately the top 1.85 m for the

120 kHz transducer presently used); (ii) a component of the fish

population may respond to the vessel (most likely avoiding, but

possibly being attracted) (Brehmer et al., 2019); and (iii) dagaa

schools observed at present survey settings are relatively narrow

(just a few pings in length) and it is possible that some particu-

larly narrow schools (<1 m in length in some dimension) are not

detected because the distance along survey track between consec-

utive pings, from beam edge to beam edge, is >school length.

Although conservative, the biomass is determined by what will be

a reproducible method that will be able to deliver an internally

consistent relative index of variability over the years that will be

valuable for management under the precautionary approach

(Francis, 1996). Suggestions for progressing towards absolute

dagaa stock estimation are given below, and include the use of

multibeam sonar to sample the near surface.

Method performance
The RF classifier provides a robust and consistent means of dagaa

school classification that, assuming software capable of perform-

ing school extraction is available, is both time- and cost-effective:

the RF approach can achieve in minutes a classification task that,

for the November 2015 survey (classifying manually 120 181

schools), took c. 100 person hours. The RF method will enable re-

peatable estimates of dagaa stock biomass to be calculated (esti-

mates that would not be subject to any potential expert operator

bias) and make this component of the stock assessment process

resilient to the loss of expertise that might arise due to changes in

personnel. Assuming stability in school morphology over time

(and there is evidence from stocks of other pelagic species that

this is likely; Cox et al., 2011; Brierley and Cox, 2015), the RF

method will enable the reanalysis of historic data (there are �20

pre 2015 surveys), and future surveys (surveys are accumulating

at �2 per year presently) in an equivalent manner to produce ro-

bust and consistent time series.

One of the strengths of the RF classifier is that it uses actual

length/widths/echo energies of schools to identify them, rather

than relying on a visual interpretation of a feature the appearance

of which will be influenced by vessel speed, ping rate, colour scale,

feature depth, and echosounder beam angle (see Diner, 2001). In

recognition of these potential impediments to successful and reli-

able visual classification, the RF model was built using only

schools detected at usual survey speeds (8–10 knots), so avoiding

the distortion in school appearance at the extremes of vessel

speed that we believe is at the root of the differences in numbers

of schools classified as dagaa/non-dagaa by RF and manual meth-

ods. In future studies relying on visual identification to test AI

approaches, prior to visual scrutiny, echosounder data should be

resampled in distance such that ping width is constant and con-

sistent with typical survey settings. Changes in school width with

depth (as the acoustic beam widens) should also be accounted for

(Diner, 2001).

Potential for future development
Vertically orientated echosounders commonly used in fish stock

assessment (Fernandes et al., 2002; Simmonds and MacLennan,

2005) have very narrow beam widths at short range (at 10 m

range, the acoustic beam of the 120 kHz echosounder used in this

study has a width of c. 1.2 m) and so offer a limited window of

observation on species that inhabit the near surface.

Consequently, the pelagic trawl used to fish near-surface dagaa

schools in this study (Table 2 and Figure 3) would likely have en-

countered many schools that were not detected acoustically.

Near-field effects also mean that echo returns from close to the

transducer (c. 1.85 m in the case of the 120 kHz transducer used

here) are not quantitatively reliable, such that typical surveys are

effectively blind to the top few metres, potentially missing bio-

mass. Use of multibeam sonar, instruments that typically sample

a fan of acoustic beams spanning up to 180� beneath the vessel,

or horizontally oriented echosounders, can open a window on

the near surface (Gerlotto et al., 1999; Paramo et al., 2010).

Multibeam has been used to make 3D measurements of fish

schools at or close to the surface, and has also delivered valuable
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data on the scale of avoidance by schools of research vessels

(Gerlotto et al., 2004). Incorporating multibeam instrumentation

into Lake Victoria fish stock assessment surveys would effectively

increase the volume of the lake sampled, provide valuable infor-

mation with regard to school morphology, lead to more school

detections for a given area (which could be readily integrated into

the RF model) and hence reduce uncertainty in fish stock biomass

estimates.

The RF model was trained and tested using data collected dur-

ing a single survey (it was impractical to try to manually classify

schools from more than one survey given available resources),

but a future objective is to apply the RF classifier to the full range

of available survey data (1997–present). We will need then to be

wary of the potential for seasonal and/or annual changes in

school characteristics. Lake Victoria shows strong seasonal physi-

cal change between fully mixed in the rainy season and stratified

in the dry season. Deeper waters can become oxygen depleted in

stratified times (Njiru et al., 2012), and this may serve to verti-

cally restrict dagaa habitat. Vertical habitat compression has been

reported in the seas off Peru when the oxycline shallows

(Bertrand et al., 2008). Year-to-year variability in school structure

may be less important: work on a variety of species over years

spanning strong fluctuations in stock biomass has suggested that

school shape does not vary significantly, but rather that it is the

number of schools that varies with fluctuations in stock biomass

(Brierley and Cox, 2015).

Between 2005 and 2014, total Lake Victoria fish stock biomass

(including dagaa, Nile Perch, haplochromine cichlid species and

others) has, on the basis of echosounder data analysis, appeared

to be stable at c. 2.5 MT (Taabu-Munyaho et al., 2016): the bio-

masses of Nile Perch and dagaa have both appeared to fluctuate

from year to year, but in opposite directions. It is questionable

how this apparent total biomass invariability can be ecologically

possible given the greatly varying sizes, trophic levels, and ages-

at-maturity of dagaa and Nile Perch. How much of this apparent

zero-sum game is an artefact of fish not obeying the “top third”

rule remains to be determined and will be the subject of an inves-

tigation that the repeatable RF classifier developed here will

enable.

The next step will be to recalculate the time series of dagaa bio-

mass from school information extracted from 20 years’ worth of

acoustic survey data. This will be achieved by (i) pre-processing

of the historic acoustic survey data (e.g. filtering noise spikes,

which may resemble dagaa schools) and collating calibration

results; (ii) building a new training dataset, composed of schools

manually classified in different seasons and years, to study tempo-

ral changes in dagaa distribution, and investigate the validity of

the “top third” method and drift in RF model parameters across

the time series; (iii) applying geostatistical and or maximum en-

tropy methods (Petitgas, 2001; Brierley et al., 2003) to map dagaa

echo intensity; and (iv) converting echo intensity to biomass us-

ing the latest measurements of dagaa TS and length–weight rela-

tionships derived from catch data. The new Lake Victoria dagaa

biomass time series will enable any emerging interannual fluctua-

tions in biomass to be considered in light of annual catches and

environmental variability.

Concluding remarks
The work reported here is a first step in moving Lake Victoria

fisheries data analysis towards a fully automated processing chain

built on machine learning and AI methods. Due to the automated

nature of these methods, time-series reanalysis will no longer be

impractical and a severe drain on resources, but will be achievable

rapidly with minimal manual effort. This will pave the way for a

spectrum of studies on spatial and temporal variability in species

distributions and progress along the road to ecosystem-based

management of Lake Victoria fisheries, and to underpinning sus-

tainable economy and food security in East Africa (Kolding et al.,

2019).
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