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Ecosystem simulation models are valuable quantitative decision tools for supporting ecosystem-based
fisheries management. However, the application of ecosystem models in fisheries management is still
undermined by the lack of simple procedures to test the effect of model uncertainty on policy outcomes.
The use of multiple ecosystem models is viewed as ‘‘insurance” against the effects of uncertainty emanat-
ing frommodelling complex systems, which calls for investigations to ascertain whether models with dif-
ferent structure and assumptions can give consistent policy evaluations. We compared two structurally-
distinct ecosystem models, Ecopath with Ecosim (EwE) and Atlantis, for Lake Victoria by varying fishing
mortality of the key functional groups: Nile perch (the top predator) and haplochromines (key prey spe-
cies). We compared model behaviour at the ecosystem level and at the level of functional groups, by eval-
uating changes in biomass of targeted groups and the consequent effects of changes in target groups on
non-target groups. Results showed qualitative similarities (direction of change) for the major harvested
groups; however, the cascading effects on non-target species varied across models, depending on the spe-
cies interaction feedbacks. We conclude that: EwE and Atlantis, despite the huge differences in ecological
processes between the models, can give consistent qualitative advice, which is needed for strategic man-
agement decisions; consistency in the representation of trophic interactions may help to minimize vari-
ations in simulated fishery responses due to model structure. This study helps to highlight scenarios that
are robust to model choice, and for which simpler models (such as EwE) could also provide reliable
advice.
� 2019 International Association for Great Lakes Research. Published by Elsevier B.V. All rights reserved.
Introduction

Ecosystem modelling for ecosystem-based fisheries management
(EBFM)

In recent years, calls for the implementation of ecosystem-
based fisheries management (EBFM) have increased (Fletcher,
2002), despite the slow progress towards its adoption (Pitcher
et al., 2009; Essington and Punt, 2011). Several barriers have been
identified as leading to the slow adoption of EBFM, including lack
of inclusion of all stakeholders in the implementation process lead-
ing to misunderstandings about the approach (Patrick and Link,
2015; Trochta et al., 2018; Nielsen et al., 2019), conflicting nature
of management objectives (Pope et al., 2019a), and institutional
inertia, where institutions have historically been prepared to pro-
vide advice that seeks to reach narrowly defined targets, such as
maximum sustainable yield (Ramirez-Monsalve et al., 2016).
Despite these challenges, the advantages of EBFM are clearly
understood: it enables evaluation of how fishing impacts entire
ecosystem and fisheries, through alternative scenarios, which can
be considered when formulating strategic fisheries management
plans and actions (Stefansson et al., 2019).

Ecosystem simulation models can be used to evaluate ecosys-
tem properties and provide information on the potential effects
that changes in EBFM practices would have on the ecosystem
(Hollowed et al., 2000). Within the last two decades, both ecosys-
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tem and individual-based models (IBM) have become popular tools
that are used to quantitatively predict the consequences of future
fishing scenarios by integrating available knowledge about the
ecosystem across different scales (Lehuta et al., 2016; Grimm
et al., 2017; DeAngelis and Gross, 2017). However, the complex
nature of the various available ecosystem models, coupled with
the absence of simple procedures for critical evaluation of model
performance and the lack of rigor in the treatment of uncertainties,
have contributed to their limited operational use in practical fish-
eries management (Link et al., 2012; Rose, 2012).

The high levels of uncertainty in ecosystem-level processes also
mean that it is risky to rely on a single ecosystem model to
address all the questions under the EBFM framework (Fulton
et al., 2011; Espinoza-Tenorio et al., 2012). Ecosystem models dif-
fer in detail of their biological processes and how they are repre-
sented, projection length and solution time steps (Plagányi,
2007). Even when the models are constructed based on the knowl-
edge of the system (i.e., with minimal process uncertainty), and
also utilizing the best available data, these are not adequate safe-
guards to the uncertainty that comes with modelling complex sys-
tems (McElhany et al., 2010). As model complexity increases, it
becomes increasingly difficult to track the impact of imperfect
knowledge of model parameters, input data, or relationships
among parameters on model results, and how these affect predic-
tions and subsequent management decisions. In ecosystem mod-
els such as Ecopath with Ecosim (EwE), a Monte Carlo approach
can be taken to examine the sensitivity of simulation results to
the initial input parameters (Christensen and Walters, 2004).
However, for more complex, multidimensional ecosystem models
with thousands of parameters, e.g., Atlantis (Fulton et al., 2011),
full-scale sensitivity analysis is not feasible unless it is done for
individual model components (e.g., Ortega-Cisneros et al., 2017;
Sturludottir et al., 2018). The confidence in outputs from these
complex ecosystem models currently relies on how well the model
fits observations through model skill assessment (Stow et al.,
2009; Olsen et al., 2016). Yet, best fits may not necessarily mean
the model captures well the natural processes and is, therefore,
the right choice. Similar fits can be obtained with different param-
eter combinations that do not necessarily reflect the reality
(Christensen and Walters, 2004).

Use of multiple ecosystem models (‘‘ensemble modelling approach”)

It is now widely recognised that an a priori selection of one
model to provide input for management, without an understand-
ing of its associated biases and limitations, can result in misleading
conclusions, and that multimodel simulations can provide some
form of ‘‘insurance” against the increased risk of uncertainty ema-
nating from modelling complex systems (Espinoza-Tenorio et al.,
2012; Collie et al., 2016; Bauer et al., 2019). An ensemble mod-
elling approach is be helpful in (1) identifying key ecological mech-
anisms that may explain the differences in simulated fishery
responses between models, (2) disentangling the uncertainty
caused by differences in ecological model assumptions from the
statistical uncertainty of future climate, and (3) identifying results
that are common for the whole model ensemble and scenarios that
may be robust to model choice (Gårdmark et al., 2013). This is
important for EBFM: convergence of model results increases confi-
dence in the policy recommendations, while divergent results can
help to highlight areas where different model considerations and
assumptions may lead to varying predictions, which can guide fur-
ther model development (Collie et al., 2016).

Inter-comparisons of ecosystem models have been performed
for several systems to understand how modelled ecosystem
impacts of fishing and climate vary across model structure using
a suite of indicators (Fulton and Smith, 2004; Travers et al.,
2010; Gårdmark et al., 2013; Smith et al., 2015; Forrest et al.,
2015; Pope et al., 2019b; Bauer et al., 2019). At the broadest level,
these studies have shown coherence in qualitative results across
models (i.e., predictions in the same direction), especially for the
target species (‘‘single-species effects”), with considerable varia-
tions between model outcomes observed for the cascading effects
on the non-target species (‘‘multispecies effects”). The authors
have concluded that: 1) structurally-distinct ecosystem models
have the potential to provide qualitative advice; 2) the divergences
in quantitative predictions and multispecies effects are due to the
diverse environmental covariates and the different number of
trophic relationships and their functional forms considered in the
models. However, it is not clear whether consistency in multi-
species interactions, including similar choice of functional groups
and representation of feeding interactions, would minimise varia-
tions in predictions due to model structure and assumptions.

The structural and functional differences between multispecies
models are huge. For example, EwE is a whole ecosystem, 0-
dimensional biomass model; predation is regulated by explicit diet
parameters (through a fixed diet matrix) and foraging vulnerability
(Christensen and Walters, 2004). On the other hand, Atlantis is a
whole ecosystem, age- and size-structured, and 3-dimensional
population model; predation is regulated by a diet preference
matrix, although the actual resulting diet is subject to mouth-
gape limitations and prey availability (Audzijonyte et al., 2017a,
2017b). The two modelling approaches are designed to achieve
the same ultimate goal, i.e. evaluating system-level trade-offs of
alternative management strategies, but have no systematic varia-
tion in assumptions. An ensemble modelling approach involving
such distinct models can provide major insights into uncertainty
around system structure and function.

Ecosystem models of Lake Victoria

Lake Victoria, East Africa (Fig. 1), supports a lucrative fishery
with annual total fishery production approaching one million ton-
nes which is worth US $600–900 million for the direct sale of fish
at landing sites (LVFO, 2016a). The present-day Lake Victoria fish
community is substantially different from that which existed
before the introduction of new species, notably Nile perch (Lates
niloticus) and Nile tilapia (Oreochromis niloticus), in the 1950 s
and 1960 s. Before the introduction, there were 500 + species of
haplochromines in the lake (Witte et al., 2007). Predation by the
introduced Nile Perch, after successful establishment during the
mid-1980 s, reduced species diversity (to c. 200 spp. of hap-
lochromines presently, Witte et al., 2007), but this predation
fuelled a productive and lucrative Nile Perch fishery. Other native
species (Table 1) also declined/collapsed either directly from Nile
perch predation or indirectly through competition for hap-
lochromine prey (Ogutu-Ohwyo, 1990). However, demographic
changes in Nile perch stock during the 1990 s, attributed to inten-
sive fishing, led to the resurgence of haplochromines (Witte et al.,
2007). The rest of native species (notably the catfishes) have never
recovered and their commercial importance for the fisheries in the
lake is considered negligible (Goudswaard and Witte, 1997). Land-
ings are presently dominated by the introduced Nile perch and Nile
tilapia and the native silver cyprinid (Rastrineobola argentea) and
haplochromines (LVFO 2016a). The silver cyprinid constitutes the
bulk of the catch (50%), followed by Nile perch (24%) and hap-
lochromines (10%) (LVFO, 2016b). This pattern is also reflected in
the species’ relative abundance from biomass surveys (Taabu-
Munyaho et al., 2016). The main fishing gears used are long lines
(especially for Nile perch), gill nets (for both Nile perch and Nile
tilapia and other harvested species), and small seines for the silver
cyprinid. These gears are operated mainly using paddled parachute
canoes in shallow nearshore areas (i.e. less than 20 m) and sail/



Table 1
Functional groups used in Lake Victoria EwE and Atlantis models. For the fish groups, information on common and scientific names, occurrence, habitat, and feeding mode is
retrieved from Fishbase: www.fishbase.org, version (10/2018). Abbreviations stand for: FF (forage fish); HTO (high turnover); and HHI (high commercial value).

Species/taxa included Common name Occurrence Habitat Feeding mode Atlantis EwE FF HTO HCV

Haliaeetus vocifer, Ceryle rudis, Cormorants Fish-eating
birds

Native Domain Piscivore Yes Yes

Crocodylus niloticus Crocodiles Native Domain Carnivore Yes Yes
Lates niloticus Nile perch Introduced Demersal Piscivore Yes Yes No Yes Yes
Clarias gariepinus North African

catfish
Native Benthopelagic Omnivore Yes Yes No No No

Bagrus docmak Semutundu Native Benthopelagic Omnivore Yes Yes No No No
Protopterus aethiopicus Marbled

lungfish
Native Demersal Molluscivore Yes Yes No No No

Synodontis victoriae, S. afrofisheri Squeakers Native Benthopelagic Insectivore Yes Yes No No No
Momyrus kanume, Gnathonemus spp. Snout fishes Native Demersal Insectivore Yes Yes No No No
Schilbe intermedius Silver catfish Native Pelagic Piscivore Yes Yes No No No
Labeobarbus altianalis Rippon barbell Native Benthopelagic Omnivore Yes Yes No No No
Enteromiuss spp. Small barbs Native Benthopelagic Omnivore Yes Yes Yes No No
Brycinus jacksoni, B. sadleri Robbers Native Pelagic Omnivore Yes Yes Yes No No
Labeo victorianus Ningu Native Demersal Phytoplanktivore Yes Yes No No No
Haplochromis spp. (Phytoplanktivorous, Benthivorus,

and Piscivorous haplochromis)
Haplochromines Native Benthopelagic Variablea 3

groups
1
group

Yes Yes No

Rastrineobola argentea Silver cyprinid Native Pelagic
(schooling)

zooplanktivore Yes Yes Yes Yes Yes

Oreochromis niloticus Nile tilapia Introduced Benthopelagic Omnivore Yes Yes No No Yes
O. esculentus and O. variabilis Other tilapias Native Benthopelagic Herbivore Yes Yes No No No
Caridina nilotica Shrimp Native Demersal Detritivore Yes Yes
Macroinvertebrates, Benthic filter feeder, Shallow filter

feeder, Deep filter feeder Microphtybenthos
Insects and
molluscs

Water surface
or demersal

Detritivore 5
groups

1
group

Microzooplankton, Mesozooplankton, Zooplankton Pelagic Phytoplanktivore 2
groups

1
group

Macroalgae, Large phytoplankton, Dinoflagellates, Pico-
phytoplankton

Phytoplankton Pelagic 4
groups

1
group

Periphyton, epiphyton Benthic
producers

Domain No Yes

Pelagic and sediment bacteria Bacteria Yes No
Labile and refractory detritus Detritus Benthic 2groups 1

group

a More than 15 trophic groups (Witte and van Densen, 1995).

Fig. 1. Location of Lake Victoria in East Africa.
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outboard engine-propelled Sesse boats in coastal and deep areas
(greater than 20 m) (LVFO 2016b).

Considerable attempts have been made towards modelling
these historical and present fishery dynamics, aimed at developing
solutions that can be used to road-test the ecosystem-level effects
of alternative fishery policies. Emphasis has also been put on the
use of EwE and Atlantis modelling frameworks, possibly because
of their popularity across the African Great Lakes (Musinguzi
et al., 2017) and generally across the globe (Fulton et al., 2011;
Colléter et al., 2016). Most of the historical EwE models for Lake
Victoria either considered short time periods, e.g. one year, or
were developed for a specific section of the lake (Musinguzi
et al., 2017). However, a new calibrated EwE model for the whole
lake that considers historical fishery dynamics (spanning a period
of more than 50 years) has recently been developed (Natugonza,
2019). The new EwE model shares some basic similarities with
the existing Atlantis model of Nyamweya et al. (2016): the histor-
ical simulation period in both models is the same; both models are
based on existing knowledge of the system and follow rigorous
parameterisation with the best available data; the choice of most
vertebrate groups and representation of feeding interactions are
comparable; both models use similar forcing data (annual land-
ings). These models are, therefore, good candidates for testing
the effects the sensitivity of alternative fishing scenarios to model
choice.

The overall aim of this study is to compare the behaviour of EwE
and Atlantis models, which differ in structure and assumptions,
using fishing scenarios. We wish to compare models at the ecosys-
tem level, using globally-tested ‘‘robust” ecosystem indicators
(Fulton et al., 2005), and also at the level of functional groups.
The work described here is not intended to lead to the recommen-
dation of one model over another. Rather, the main objective is to
investigate how the ecosystem effects of fishing are sensitive to the
model structure. Multispecies models are complex and typically
generate extensive outputs. To keep comparisons between models
manageable, biomass and catch predictions are aggregated into
annual trends without spatial and size- and age-structure
considerations.
Material and methods

The models

Ecopath with Ecosim (EwE)
EwE is a biomass model that is widely used in modelling food-

web dynamics (Christensen and Walters, 2004). The trophic mass
balance routine (Ecopath) enables partitioning of an ecosystem
into functional groups based on niche similarity and data availabil-
ity. Biomass flows through functional groups are regulated by gains
(consumption, production, and immigration) and losses (mortality
and emigration), through predator–prey relationships. For each
functional group, the net difference between gains and losses is
equal to the instantaneous rate of biomass change, which is repre-
sented by the biomass accumulation (BA) parameter. Key model
parameters include biomass per unit of habitat area, production
rate per unit of biomass, consumption rate per unit of the biomass
of predator, and ecotrophic efficiency (EE, the proportion of
production that is utilized in the system). These parameters are
estimated outside the model. The software can use the input data
along with algorithms and a routine for matrix inversion to
estimate one missing basic parameter for each functional group,
particularly EE, which is never estimated experimentally. The
Trophic level (TL) of each functional group is calculated by the soft-
ware on the basis of average annual predation by aggregating diet
data. Primary producers and detritus are assigned a TL of 1, and the
TL of consumer groups is calculated as the biomass-weighted aver-
age TL of its prey + 1.

The time dynamic simulations are conducted in Ecosim, a rou-
tine of EwE that inherits Ecopath parameters to provide predic-
tions of biomass and catch rates of each group as affected
directly by fishing, predation, and change in food availability, and
indirectly by fishing or predation on other groups in the system.
Predation is governed by foraging arena theory (Ahrens et al.,
2012), where functional groups are divided into vulnerable and
non-vulnerable components, such that the overall feeding rate is
somehow limited by prey density. The parametrisation is tested
using fishery drivers (e.g. catch, effort, fishing mortality) and by
adjusting foraging arena parameters (vulnerabilities) to ensure
that predation mortality rates are within the tolerable limits given
the prescribed groups’ productivity (production per unit biomass).

The EwE model of Lake Victoria that was used in this study is
described in Natugonza (2019), and a summary of its features is
shown in Fig. 2. The model can be accessed from https://doi.org/
10.6084/m9.figshare.7306820.v4. Parameterisation and calibration
of the model follow best practices documented in the literature
(Heymans et al., 2016); thermodynamic inconsistencies are
checked using PREBAL diagnostics (Link, 2010). The model’s overall
pedigree index is 0.53, which is suggestive of intermediate data
quality. Model skill assessment using one of the correlation-
based metrics described in Olsen et al. (2016) suggests that the
predicted biomass and catch for the majority of harvested groups
match well with the observations.

The EwE model of Lake Victoria covers an area of approximately
68,800 km2 (3.05�S to 0.55�N and 31.5� to 34.88�E) and the initial
conditions represent the period when most of the non-native spe-
cies had just been introduced, i.e., 1960. The model consists of 23
biological groups, organised either in single species or multi-
species groups depending on habitat, feeding, economic impor-
tance or availability of data. The functional groups include 15 fish
groups, 1 fish-eating birds group, 1 reptile group, 3 invertebrate
groups, 2 primary producers (phytoplankton and macrophytes),
and 1 detritus group (Table 1). The model is set-up in such a way
that only fish groups are modelled in detail; the dynamics of inver-
tebrate and producer groups are modelled superficially.
Haplochromines, the major prey for piscivores (Table 1), are mod-
elled as one group due to lack of species-specific data. Nile perch,
another group of focus in the fishing scenarios (see below), is also
modelled as one group despite the species’ dietary preferences
related to size (Kishe-Machumu et al., 2012). Size-related dietary
shifts are modelled implicitly by including all possible prey for
juvenile and adult Nile perch in the same diet matrix.

The species/groups that are important either for commercial
purposes or for food are harvested in the model by a specific fish-
ing fleet. The model includes four fishing gears commonly used on
the lake i.e. gillnets, longlines, small seines, and ‘others’. Gillnets
target most species but the bulk of the catch is Nile perch and Nile
tilapia. Longlines primarily target Nile perch, but other demersal
and benthopelagic species (Table 1) are also included in this fleet.
Small seines target silver cyprinid; freshwater shrimp (Caridina
nilotica) and haplochromines are by-catches when the gear is
deployed at night using light attraction and during the day without
the aggregation lighting, respectively. The ‘other’ gear category is
an aggregation of gears (e.g. beach seines, cast nets, traps) that tar-
get a variety of fish species from shallow inshore regions. The
model is fitted to time series of biomass and landings for the har-
vested fish groups for the period 1960–2015 using fishing mortal-
ity (F) as a driver. Calibration is performed stepwise; first, by
searching for vulnerabilities for each group with the time series
from their default Ecosim values; and second, by adjusting diet
composition to fine-tune predation mortality trends until best pos-
sible fits are achieved (Natugonza, 2019).

https://doi.org/10.6084/m9.figshare.7306820.v4
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Fig. 2. Schematic diagram showing the major features of EwE and Atlantis models for Lake Victoria. F stands for fishing mortality.
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Atlantis
Atlantis is a deterministic, spatially resolved tool that is based

on dynamically coupled biophysical and fisheries sub-models (pro-
duction, consumption and predation, waste production and
cycling, migration, reproduction and recruitment, habitat depen-
dency and mortality) (Fulton et al., 2011). A summary of the Atlan-
tis modelling framework is included here, but a detailed
description of the setup, process equations, parameterisation and
calibration procedures can be found elsewhere (e.g., Audzijonyte
et al., 2017a, 2017b). The physical and biological processes are
modelled in interconnected cells representing major features of
the physical environment. The spatial domain is 3-dimensional,
consisting of user-defined active regions and boundary layers that
represent biogeographic features (hydrography, bathymetry and
species distribution).

The biological model consists of functional groups that are
defined based on ecological roles, ontogenetic behaviour and feed-
ing interactions. Exchange of biomass occurs between regions
according to seasonal migration and foraging behaviour, while
water fluxes (which control advection of nutrients and plankton),
heat, and salinity flux across boundaries are represented by a cou-
pled hydrodynamic model. The flow of energy is tracked as nitro-
gen, which in all vertebrate groups is partitioned into structural
and reserve nitrogen. Structural nitrogen determines growth, while
reserve nitrogen (the amount of which varies depending on the
food intake) is used for reproduction. Consumption is based on a
modified Holling type II response, while recruitment is modelled
using Beverton-Holt function. TL of each group is also computed
on the basis of average annual predation by aggregating diet data
supplied through a preferential diet matrix.

The fisheries model simulates user-defined fishing fleets that
are assigned to harvested groups with selectivity based on length.
Calibration is geared towards matching predicted and observed
biomass trends, or diet, by varying initial conditions (particularly
growth rates, consumption rates, natural mortality rates, and
recruitment parameters) until size-at-age for age-structured
groups is within 20% of initial conditions (Audzijonyte et al.,
2017a).

The Atlantis model of Lake Victoria used in this study is
described in Nyamweya et al. (2016) and a summary of features
applicable to this study is shown in Fig. 2. The model can be
accessed from https://doi.org/10.6084/m9.figshare.4036077.v1.
The spatial extent covers the area of the entire lake (approximately
68,800 km2), which is divided into 12 active regions (where the
biology is modelled) and five boundary layers. Each region has
up to three depth layers depending on the depth of the water col-
umn i.e. inshore (less than 20 m), coastal (20–40 m), and deep
(greater than 40 m). The initial conditions represent the Lake Vic-
toria ecosystem in 1958. The physical processes (temperature,
salinity, and water fluxes) are modelled through a coupled Regio-
nal Oceanographic Model (ROMS, Nyamweya et al., 2016). The bio-
logical model has 36 functional groups: 1 fish-eating birds group, 1
reptile group, 17 fish groups, 9 invertebrate groups, 4 primary pro-
ducers, 2 bacteria and 2 detritus groups (Table 1). The vertebrate
groups are modelled as age-structured groups (with up to 10 age
classes) while the rest of the lower TL groups are modelled as bio-
mass pools. The fisheries model includes four fishing fleets: gill net,
targeting most of the species except small fishes, such as silver
cyprinid; long-line, mainly targeting Nile perch and other demersal
and benthopelagic fishes; small-seine, mainly targeting the silver
cyprinid; and inshore fleet, which is an aggregation of gears
(mostly illegal gears) targeting all species inhabiting shallow
inshore habitats.

The model runs in 12 h time steps for the period 1958–2015.
The model parameterisation is rigorous, utilizing the best available
data and following best practices. Fishing mortality is varied with
multiplication factors reflecting changes in the fishing effort dur-
ing the simulation period, while final calibration is done by match-
ing the predicted biomass and catch to the general trends of
observed catch per unit effort (CPUE) and officially reported land-
ings, respectively. Skill assessment uses two of the metrics
described in Olsen et al. (2016): Modelling Efficiency (MEF), which
measures scale mismatch between predictions and observations
and Pearson correlation (r), which measures the correlation
between predictions and observations. The values of MEF and r
are all positive and above 0.5 for the majority of the functional
group, suggesting that model predictions match well with
observed data.

Fishing scenarios
Fishing scenarios were based on the two major groups, Nile

perch and haplochromines, which are also emphasized in the Lake
Victoria Fisheries Management Plan (LVFO, 2016c). These groups
are of great economic and ecological importance in the present-

https://doi.org/10.6084/m9.figshare.4036077.v1
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day Lake Victoria ecosystem. Nile perch is a voracious piscivore at
the top of the food chain; the abundance of the species has consid-
erable influence on the entire system (Marshall, 2018). Similarly,
haplochromines are mid-TL forage fishes, whose abundance
directly affects the commercially exploited fisheries at the top of
the food chain. In terms of research, these groups are also the most
studied. We assumed that the representation of these groups in
both models is fairly grounded in data, and therefore, their projec-
tions are less likely to suffer from the effects of data uncertainty
compared to less-studied groups.

We tested four fishing scenarios, which were defined as follows:
NP: 0.6F, where Nile perch fishing mortality was reduced by 40%
from the baseline level; NP: 1.4F, where Nile perch fishing mortal-
ity was increased by 40% from the baseline level; HP: 0.0F, where
fishing mortality for haplochromines (the major prey for Nile
perch, Fig. 3) was reduced to zero; and status quo (SQ), where fish-
ing mortality rates for all the harvested functional groups were
maintained at the baseline levels. The baseline refers to model con-
ditions at the end of the historical reconstruction simulation (i.e.
2015). Table 2 shows key baseline fishery conditions in the two
models for the harvested fish groups, but readers can also get more
information on the productivity of lower trophic levels via the links
given to the models and their data. In each scenario, fishing mortal-
ity rates were held constant at the prescribed (scenario) test value,
and the model projected for 20 years into the future. The SQ sce-
Fig. 3. Schematic representation of predation interactions in EwE and Atlantis model
represented in both models, to ease comparisons. Note that arrows move towards the
predator’s diet. Thick and black arrows indicate that the prey species makes up more than
less than 5% of the predator’s diet.
nario was included because an ecosystem is expected to change
under any level of fishing, and therefore, the results of the SQ sce-
nario at the end of the projection period may not necessarily be the
same as those at the start of the projection (Table 2, Electronic Sup-
plementary Material (ESM) Table S1).

Ecosystem indicators for comparison
Ecosystem indicators spanning a wide range of processes and

biological groups have been used previously to detect a range of
impacts from fishing (e.g. Fulton et al., 2005; Smith et al., 2015;
Forrest et al., 2015). Indicators can be evaluated at a functional
group level, e.g., biomass or catch of individual species, and at a
community level, e.g. relative abundance of key functional groups
(piscivores vs. planktivores, pelagic vs. demersal), mean TL of com-
munity (MTLbiomass) or mean TL of catch (MTLcatch). Community-
level indicators are perceived to be comparatively robust, respond-
ing to fishing pressure more predictably than individual species
(Fulton et al., 2005). For example, the relative biomasses of pisci-
vores and planktivores can indicate a change in the trophic struc-
ture of the system, as can a shift in TL of the catch.

MTLbiomass was calculated for each scenario as average TL of
model groups, weighted by their biomass according to the formula:

MTLbiomass ¼
X
i

TLi � Bi

B
ð1Þ
s of Lake Victoria. Model groups shown here are only for fish species, which are
predators and arrow thickness is consistent with the contribution of prey to the
30% of the predator’s diet, while thin arrows indicate that the prey species makes up



Table 2
Baseline (2015) fisheries conditions in the Atlantis and EwE model used in the forward simulations. Biomass and catch values are presented in t/km2. F is fishing mortality
approximated as catch/biomass.

Model Atlantis EwE

Functional group Baseline biomass Baseline catch F Baseline biomass Baseline catch F

Nile perch 1.11E+01 3.46E+00 0.312 1.31E+01 4.44E+00 0.340
North African catfish 6.18E-02 3.74E�02 0.605 1.41E�01 5.72E�02 0.404
Semutundu 3.55E�06 2.91E�06 0.818 6.19E�01 1.67E�02 0.026
Marbled lungfish 5.77E�03 3.93E�03 0.681 7.56E�04 4.31E�04 0.569
Squeakers 3.04E�02 1.70E�02 0.558 4.28E�01 1.06E�03 0.002
Snout fishes 7.50E�07 5.23E�07 0.697 0.00E+00 0.00E+00 NA
Silver catfish 1.07E�02 6.83E�03 0.639 1.06E+00 1.45E�01 0.136
Ripon barbell 5.37E�04 1.44E�04 0.267 2.96E�01 2.37E�02 0.079
Small barbs 9.69E�02 7.36E�03 0.075 2.03E�02 0.00E+00 0.000
Robbers 1.34E�03 9.03E�04 0.672 5.86E�09 1.02E�09 0.173
Ningu 4.11E�02 2.06E�02 0.500 2.91E�01 5.82E�02 0.200
Haplochromines 1.05E+01 8.82E�01 0.083 9.57E+00 1.15E+00 0.120
Silver cyprinid 1.64E+01 5.42E+00 0.330 1.02E+01 5.62E+00 0.549
Nile tilapia 1.53E+00 5.55E�01 0.362 2.53E+00 1.08E+00 0.425
Other tilapias 1.21E�01 7.71E�02 0.635 3.53E�01 1.77E�01 0.500
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where TLi and Bi are the trophic level and biomass of model group
i, respectively, and B is the total biomass of all the fish groups.
The grouping of lower TL groups (zooplankton and phytoplank-
ton) is considerably variable across models, therefore, only fish
groups are considered to keep indicators comparable. Biomasses
of planktonic groups can also vary greatly with environmental
effects, and such fluctuations may not be relevant to fisheries
management.

MTLcatch was calculated for each scenario using the same
approach as with MTLbiomass, but using the biomass of catch for
each model group rather than stock biomass i.e. as the mean TL
of all landed fish, weighted by the biomass of catch (equation (2)).
MTLcatch ¼
X
i

TLi � BCi

BC
ð2Þ

where BCi is the biomass of catch of model group i and BC is total
catch. This indicator is perceived to signal the depletion of high TL
species i.e. ‘fishing down the food web’ (Pauly et al., 1998).

To assess the changes that may occur in response to each fishing
scenario, each indicator was analysed at the end of the projection
relative to baseline values according to the formula:
100 � IVend

IVstart
� 1

� �
ð3Þ
where IVstart and IVend are indicator values at the start and end of the
projection, respectively. All outcomes of fishing scenarios were
compared at the end of 20 years; a percentage change of zero indi-
cated no change in indicator value relative to baseline. Interpreta-
tion of results followed that models gave consistent qualitative
results if the direction of change in prescribed indicator was the
same (either increase or decrease relative to baseline values), while
consistent quantitative results were indicated by predictions with
similar direction and magnitude.

To ascertain whether similarities or discrepancies between
models in the forward simulations (forecast) were linked to agree-
ments or disagreements, respectively, between models in the his-
torical simulations, we compared the direction and strength of
the association between EwE- and Atlantis-simulated biomasses
using Spearman rank correlation (r). We calculated r using time-
series predictions for each functional group during the last
20 years of the simulation (1996–2015), and compared values with
those obtained using 20-year projected biomass time-series from
the forecast (2016–2035).
Results

Species-level indicators

Comparison of EwE and Atlantis models in both the historical
reconstruction simulations (Fig. 4) and forward simulations under
alternative fishing scenarios (Table 3, ESM Fig. S1) showed variable
results; however, overall qualitative agreements between models
(positive correlations show similar direction of change) were
observed for the dominant fisheries, especially Nile perch and sil-
ver cyprinid. However, not all the agreements between models in
the historical simulations translated into agreements in the for-
ward simulations. For instance, the models showed similar trends
(although the correlations were weak) for haplochromines and
Ningu in the historical simulation (Fig. 4), but the forward simula-
tions showed opposite trends in most of the scenarios (Table 3).
Also, under the SQ scenario, Atlantis predicted an increase for Nile
perch, but EwE instead predicted a decrease (ESM Fig. S1). We
observed very strong disagreements between models (i.e., opposite
trends in biomass predictions) in the historical simulation for Nile
tilapia, other tilapias, Ripon barbell, , silver catfish, and small barbs
(Fig. 4). However, foward projections showed consistent qualita-
tive results (similar direction) for these groups in most of the sce-
narios, except for Nile tilapia where the models predicted opposite
trends in every scenario (Table 3). Interestingly, even when these
groups showed weak or negative correlations for the entire simu-
lation time series (Table 3), the end-state results (where biomass
was evaluated at the end of the simulation relative to the baseline),
including Nile tilapia, were generally consistent across models
(Fig. 5). This is important for management advice, i.e., whether
advice can be based on end-state results (where in this case models
agree) or predictions for the entire projection time series (ESM
Fig. S1, where the models differ).

Despite the qualitative similarities between model predictions,
quantitative results (showing the sensitivity of groups to direct and
indirect effects of fishing) were different in all scenarios, and the
differences were not systematic across models (Fig. 5). For
instance, Nile perch increased and decreased in both models under
the NP: 0.6F and NP: 1.4F fishing scenarios, respectively, but the
sensitivity of the group to fishing was two times higher for EwE
than Atlantis. The indirect effects on the non-target groups were
variable. In the two fishing scenarios targeting Nile perch (NP:
0.6F and NP: 1.4F), for instance, Atlantis was more responsive than
EwE for haplochromines, silver cyprinid, semutundu, Ripon bar-
bell, and other tilapias. The magnitude of change in biomass of Nile
tilapia and small barbs was less than 2% in each model, while the



Fig. 4. Biomass of fish groups simulated by EwE and Atlantis models of Lake Victoria in the historical reconstruction simulation (1996–2015). Trends are presented with
values of Spearman rank correlation coefficient (r), showing the level of consistency between EwE and Atlantis predictions in the hindcast.
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snout fishes collapsed in each model before the end of the projec-
tion (Fig. 5).

Community-level indicators

Changes in community-level indicators with respect to alterna-
tive fishing scenarios are shown in Fig. 6. Four major patterns were
observed. First, the magnitude of change in community-level indi-
cators was generally smaller than species-level indicators. For
instance, the maximum observed change in MTLbiomass and
MTLcatch in all fishing scenarios was in the order of 0–5%. Second,
the community level indicators showed more coherence in predic-
tions between the models than species-level indicators. Exceptions
were: 1) biomass of demersal and piscivore guilds under SQ sce-
nario; 2) biomass of forage fishes and ratios associated with feed-
ing and habitat guilds, i.e., planktivorous/piscivorous and pelagic/
demersal ratios, respectively, under the NP: 1.4F scenario; 3) bio-
mass of high turnover and high commercial value species, and total
biomass, under the NP: 0.6F scenario. Third, the community-level
indicators were generally more sensitive in Atlantis than EwE.
Exceptions were the biomasses of demersal and piscivorous guilds,
where the responses were two times higher in EwE than in Atlantis
under the two Nile perch scenarios (NP: 0.6F and NP: 1.4F). This is
due to the individual influence of Nile perch in both scenarios,
being the most dominant demersal and piscivorous species, and
also being more sensitive in EwE than Atlantis. Fourth, trophic
guilds showed unexpected results under high fishing pressure.
For instance, a fishing-induced decline in the piscivore guild under
the NP: 1.4F scenario was expected to cause an increase in plankti-
vore guild and forage fishes. However, the planktivore guild also



Table 3
Spearman rank correlation of EwE versus Atlantis-simulated biomass trends in the
forward simulations (2015–2035). Scenarios are defined as: status quo (SQ); no
fishing for haplochromines (HP: 0.0F); Nile perch fishing mortality reduced by 40%
from baseline (NP: 0.6F); Nile perch fishing mortality increased by 40% from baseline
(NP: 1.4F).

Group name/scenario SQ HP:0.0F NP:0.6F NP:1.4F

Nile perch �0.96 0.39 0.44 �0.44
North African catfish 0.78 0.803 �0.13 0.95
Semutundu 1.0 0.44 1.0 1.0
Marbled lungfish 1.0 1.0 1.0 1.0
Squeakers 0.30 0.54 �0.86 0.91
Silver catfish 0.66 0.62 0.80 0.54
Rippon barbell 1.0 1.0 1.0 1.0
Small barbs 0.65 0.49 0.63 0.52
Ningu �0.97 �0.97 0.99 �1.0
Haplochromines �0.95 �0.14 0.99 �0.99
Silver cyprinid 1.0 0.99 0.99 1.0
Nile tilapia �0.63 �0.64 �0.72 �0.45
Other tilapias 0.88 �0.17 0.83 0.90
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declined in both models, while the overall biomass of forage fishes
declined in EwE and remained relatively unchanged in Atlantis. At
low fishing pressure (under NP: 0.6F scenario), results followed the
expected trend, where the increase in piscivore guild was accom-
panied by a decline in planktivore guild and forage fishes in both
models.
Discussion

The work described in this paper relates to the use of multi-
model simulations in evaluating alternative fishing policy scenar-
ios. It is important in highlighting scenarios that are robust to
the choice of modelling strategy, which can guide further model
development. Contrasting predictions between ecosystem models
have been the major challenge impeding their use to support EBFM
(Harwood and Stokes, 2003). Understanding the key ecological
mechanisms responsible for the differences in simulated fishery
responses between models is of great importance for management.
We have used EwE and Atlantis models in this study because of
their wide use across the globe (Fulton et al., 2011; Colléter
et al., 2016) and, more specifically, on the African inland fisheries
(Musinguzi et al., 2017). Both modelling frameworks represent
the food webs, abiotic environment (including climate impacts),
and fisheries, but at different scales and varying levels of complex-
ity (i.e., heterogeneity in lake habitats, physics, and algorithms of
biomass elaboration and feeding). Atlantis, in particular, offers a
more detailed and explicit representation of biochemistry, physical
processes, and lower trophic level dynamics (Fulton et al., 2011).
The calibration process also differs between the models; Atlantis
tracks the age structure and weight at age of fish groups, whereas
calibration in EwE is mainly achieved through adjustment of forag-
ing arena parameters. These differences, together with the species
interaction feedbacks and baseline fishery conditions were identi-
fied as the most important model components causing relatively
large variations in quantitative results between the models
(Fig. 5). Despite of that, the models give consistent qualitative pre-
dictions, especially for the key targeted fisheries, which shows the
potential of structurally-distinct ecosystemmodels to provide con-
sistent qualitative advice that is valuable for EBFM even when
quantitative results differ.

Effect of trophic interactions on model agreement/disagreement

The models gave consistent qualitative predictions with respect
to varying fishing pressure on Nile perch and the immediate prey
(haplochromines). It is generally expected in any multispecies sys-
tem that fishery-induced changes in predator abundance (either
increase or decrease) will lead to corresponding shifts in prey
abundance, except where competition among several prey species
outweigh the effects of predation-release (May et al., 1979). The
increase and decrease in Nile perch biomass in both models under
the two contrasting fishing pressure scenarios, NP: 0.6F and NP:
1.4F, respectively, and the corresponding changes in the biomass
of haplochromines (the main prey) were in accordance with the
expection. Previous studies involving ecosystem model inter-
comparisions have also shown qualitative agreements between
models in relation to the direct effects fishing on target species
and immediate prey, except that the cascading effects of fishing tar-
get species on the non-target species (multispecies effects) have
been found to be generally different (Fulton and Smith, 2004;
Travers et al., 2010; Smith et al., 2015; Forrest et al., 2015; Bauer
et al., 2019). The differences in multispecies effects have partly
been attributed to the mismatch in the number of trophic links
and their functional forms considered in the models. The choice
of biological groupings and representation of diets have an influ-
ence on the level of connectivity between groups, and this is likely
to affect the direction of one species’ biomass or catch as affected
by other species’ fishing mortality. In the present study, we
attempted to minimize this by using models with comparable rep-
resentation of functional groups and trophic connections, for most
vertebrate groups (Fig. 3), which, with a few exceptions, yielded
consistent results for the non-target species. The observed quali-
tatitive differences in our study may be due to the mismatch in
the representation of some groups (e.g., haplochromines, which
are modelled in three trophic groups in Atlantis and one group in
EwE); inclusion of Nile perch cannibalism in Atlantis but not in
EwE, and haplochromine cannibalism in EwE but not in Atlantis;
the overall differences in strength of diet dependencies, e.g., silver
cyprinid as large diet item to snoutfish, North African catfish,
semutundu and squeakers in EwE but not in Atlantis (Fig. 3). We,
therefore, suggest that consistency in model setup may help to
minimize variations in predictions due to model structure and
assumptions. This is relevant for future studies: basic model con-
siderations such as choice of functional groups and feedng interac-
tions may need to be standardised before model comparisions are
made.

On the other hand, the models showed substantial variations in
quantitative results. For example, under the two contrasting Nile
perch scenarios, NP: 0.6F and NP: 1.4F, both models predicted an
increase and decrease in Nile perch biomass, respectively, but the
magnitude was 3-times higher in EwE than Atlantis. This is linked
to the differences in baseline F for Nile perch, which is higher in
EwE than Atlantis (Table 2). This may also partly explain the higher
responsiveness of groups such as semutundu, other tilapias, and
Ripon barbell in Atlantis than EwE, given the comparatively higher
baseline F in the former (Table 2). However, the the variations in
responsiveness of these groups across models can also be attribu-
ted to the differences in baseline abundance at the beginning of the
projections. These groups, in addition to the North African catfish
and squeakers, were virtually collapsed in the Atlantis model dur-
ing the last 20 years of the historical simulation (Fig. 4) and, there-
fore, were more sensitive to changes in predator/prey abaundance
in Atlantis than EwE. This can also be seen from the absolute bio-
mass predictions at the end of the simulation: even when the mag-
nitude of change in relative biomass (i.e., biomass at the end
relative to biomass at the start of the projection) is higher in Atlan-
tis than EwE, the absolute biomasses at the end of the projections
are lower in the former (ESM Fig. S1). Marbled lungfish and snout
fishes, which showed perfect trends in the historical simulation,
also exhibited perfect trends in the forecast, although this doesnot
suggest that cosnsistent results in hindcast necessarily translate
into consistent results in the forecast (Table 3; Fig. 4).



Fig. 5. Percentage change (2035 relative to 2015) in biomass of functional groups as predicted by Atlantis and EwE models. Zero indicates no change. Bars on the same side of
zero line (positive or negative) indicate qualitative agreements between models.
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Variations in quantitive results for the rest of the groups (e.g.,
haplochromines and silver cyprinid) that are not related to fishery
drivers or baseline conditions, i.e., where the responsiveness was
higher in Atlantis than EwE despite the lower F in the former,
can be attributed to the strength of diet dependencies and the dif-
ferencies in mechanisms governing predation in ecah model
outweighing the direct effects from fishing. in EwE, predation mor-
tality is governed by the foraging arena theory, mainly through the
vulnerability parameter (Walters et al., 1997; Ahrens et al., 2012),
while in Atlantis, predation is modelled through the Holling type II
functional response (Audzijonyte et al., 2017a). Low vulnerabilities
in EwE (which usually represent bottom up control) tend to con-
strain the responsiveness of the model and increase the resilience
of prey to changes in predator abundance (Christensen and
Walters, 2004; Ainsworth and Walters, 2015). In the EwE model
used in this study (https://doi.org/10.6084/m9.figshare.7306820.
v5), the values representing the vulnerability of haplochromines
and silver cyprinid to Nile perch (the main predator) are all less
than 2, and this could be the main reason these groups are less
responsive to changes in predator (Nile perch) abundance in
EwE. While these low vulnerabilities can buffer against unrealisti-
cally high fluctuations associated with top-down (Lotka–Volterra)
predator–prey relationships, they also tend to overestimate resili-
ence of the system and this may result in understimation of extinc-
tion risk (Christensen andWalters, 2004). This is clearly seen under
the NP:0.6F scenario (Fig. 5): when Nile perch biomass increases by
25% in Atlantis due to reduced fishing pressure, the biomass of
haplochromines (the main prey) decreases by 50%; however, in
EwE, a 50% increase in Nile perch biomass under the same scenario
is accompaigned by 10% decrease in haplochromine biomass. Sub-

https://doi.org/10.6084/m9.figshare.7306820.v5
https://doi.org/10.6084/m9.figshare.7306820.v5


Fig. 6. Indicators based on biomass and catch of fish groups as predicted by EwE and Atlantis. Values represent 2035 value of indicator under each fishing scenario relative to
2015 baseline value. Zero indicates no change. Abbreviations stand for piscivorous (pisciv.), planktivorous (planktiv.), high commercial value (HCV).
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sequent improvements to the EwE model of Lake Victoria may
need to rexamine the vulnerability matrix and ensure that the fit-
ted vulnerabilities donot overconstrain the model.

The low responsiveness of haplochromines and silver cyprinid
in EwE compared to Atlantis may also be linked to the difference
in the assimilation efficiency (AE) of Nile perch (the main predator)
in the two models. In EwE model, unassimilated food for Nile perch
is set at 20%, while in Atlantis, unassimilated food is set at 40%. This
imbalance in AE is likely to create higher predation mortality in
Atlantis than EwE, leading to a higher sensitivity of prey to changes
in predator abundance in the former. Future investigations may
also attempt to recalibrate the EwE model with lower values of
AE, but the productivity of Nile perch would need to be reduced
to avoid crushing the prey.
Previous studies that have been conducted on this subject
(inter-model comparisions) have found mixed results. Some stud-
ies have found EwE to be more responsive than Atlantis (e.g., Smith
et al., 2011; Kaplan et al., 2013; Forrest et al., 2015), which has
been attributed to the ‘‘delaying” features incorporated in the
Atlantis modelling framework, e.g., age- and size-structure, life-
history stages and reproductive behaviour, with an effect of delay-
ing the reproductive response of a population. In the present study,
however, this explanation is only consistent with the smaller
increase in biomass of Nile perch in Atlantis than in EwE under
the NP: 0.6F scenario. Under the NP: 1.4F scenario (where fishing
pressure on Nile perch is intensified), the delaying features in
Atlantis would instead result in a rapid fishing-induced decline,
as the population takes longer to recover, which is not the case.



V. Natugonza et al. / Journal of Great Lakes Research 45 (2019) 1260–1273 1271
Other studies (e.g., Smith et al., 2015) found Atlantis to be more
responsive than EwE, even when the former incorporated age-
structure and life history, and attributed this to the relative
strength of diet dependencies and competition outweighing delay-
ing features. These findings (both in the present and previous stud-
ies) suggest that there may be no single key ecological mechanism
explaining the differences in simulated fishery responses between
structurally-distinct models, and that uncertainty in fishery
responses may be more driven by biases and ecosystem- or
group-specific considerations in individual models than the model
structure. This underpins the importance of ensemble modelling
approach to help identify such areas before the models are used
in management, but more importantly, it highlights the risk of
relying on one ecosystem model to inform management decisions.

Effect of the environment and lower trophic dynamics on model
predictions

The EwE model of Lake Victoria used in this study does not
include the effects of non-fishing, anthropogenic changes such as
limnological and other physical attributes (e.g., nutrient inputs),
which may have an effect on Lake Victoria’s ecosystem functioning
(Hecky et al., 2010; Downing et al., 2014). Forrest et al. (2015)
found the dynamics of several functional groups in Atlantis to be
more influenced by bottom-up processes (i.e., fluctuations in pri-
mary production driven by the oceanographic components in the
physical sub-model) than in EwE, where there were no explicit pri-
mary productivity drivers, and this contributed to major deviations
between model predictions. This could also be contributing to the
differences observed in this study. At the core of Lake Victoria’s
Atlantis model is a ROMS model, which provides hydrodynamic
input (Nyamweya et al., 2016). The model shows seasonal varia-
tion in lakes’ physical processes and heterogeneity in nutrient con-
centrations, which are all positively correlated with fish species
abundance (Nyamweya et al., 2016). In contrast, the EwE model
is used in its simplest, non-spatial form. This may be a shortcoming
to this study, i.e., contrasting a 3-dimensional Atlantis model with
a zero-dimensional EwE model; however, comparisons are made
between biomass and catch predictions that are aggregated into
annual trends and for the entire lake, with no age- and size-
structure considerations, and hence the conclusions for strategic
management advice are expected to remain valid. Future studies
may need to incorporate environmental and non-fishing anthro-
pogenic factors into the EwE model, include the spatial effects
using the Ecospace module (Christensen and Walters, 2004), and
evaluate alternative scenarios using the two models at habitat
level (inshore vs. coastal vs. deep open waters).

Effect of species aggregation on model sensitivity

Our study shows MTLbiomass to increase under the NP: 0.6F sce-
nario and decrease under the NP: 1.4F scenario in both models. This
is expected given the TL of Nile perch (a piscivore at the top of the
food chain). Reducing fishing mortality of Nile perch in the NP: 0.6F
scenario leads to an increase in biomass and hence average TL of
the community, and the reverse occurs when fishing pressure on
the predator is intensified under NP: 1.4F scenario. Nevertheless,
the maximum observed shift is less than 5%, which is possibly
caused by the higher biomass of silver cyprinid, a low TL pelagic
zooplanktivore. In contrast, MTLcatch increases when fishing pres-
sure is increased for the piscivorous fish (NP: 1.4F scenario) and
reduces for the low-TL forage fishes (HP: 0.0F scenario). This is
inconsistent with the expectation from the ‘fishing down the food
web’ hypothesis (Pauly et al., 1998), where TL of the catch is
expected to decline in response to preferential depletion of high-
TL species. However, this could be due to the fact in both models,
F remains constant (and relatively small), contrary to the progres-
sive and sustained increase in fishing pressure depicted under the
‘fishing down’ hypothesis. In addition, the increase in catches of
the predator in the short-term can increase TL of the catch and this
seems to be the case with the NP: 1.4F scenario, given the short
projection period considered in the present study.

Shifts in community-level indicators were small compared to
species-level indicators, and less sensitive in EwE compared to
Atlantis. Travers et al. (2010) used two fishing scenarios (overfish-
ing vs. stock recovery) to compare relative change in selected
ecosystem indicators in EwE and OSMOSE (Object Oriented Simu-
lator of Marine Ecosystems, Shin and Cury, 2001) and found similar
results. In EwE, the observed maximum change in MTLbiomas and
MTLcatch was less than 1% and about 1.5%, respectively, while in
OSMOSE, MTLbiomas and MTLcatch changed about 1% and 4%, respec-
tively. Interestingly, these changes were only observed in the over-
fishing scenario; the recovery scenario showed no change. Smith
et al. (2015) extended this comparison to three models by adding
Atlantis and also found similar results: the maximum change
was 2% for MTLbiomass and 3% for MTLcatch, with EwE predicting
the least change in all cases. It is not clear whether such changes
can be detected in real-world fisheries amidst multiple stressors
(Branch et al., 2010).

By examining the feeding guilds, we expected to observe a
fishing-driven decline in the piscivore guild under the scenario of
increased fishing pressure on Nile perch (NP: 1.4F). In turn, we
expected this to cause an increase in forage fishes, which are major
prey for the piscivore guild. Whereas results of Atlantis were some-
what consistent with this expectation, EwE predicted the opposite
owing to the low sensitivity of haplochromines to Nile perch pre-
dation. Under the same fishing scenario (NP: 1.4F), we also
expected planktivore to piscivore ratio to increase following a
fishing-driven decline in Nile perch. However, results show that
this indicator only increased in EwE, but decreased in Atlantis.
The decline in Atlantis can be attributed to a strong reduction
(by more than 50%) in the biomass of silver cyprinid, a dominant
pelagic planktivore, possibly due to competition with hap-
lochromines whose biomass increases by 100% following a decline
in the main predator (Nile perch). The strong decline in silver
cyprinid cancels out the effect of a decline in Nile perch on piscv-
iore abundance. When the indicator is recalculated under the same
scenario, but without the silver cyprinid, it also shows an increase
in Atlantis (i.e., by 93%), which is consistent with EwE prediction
and the overall expectation, despite the difference in magnitude.
Conclusion

The question that motivated this work was: can EwE and Atlan-
tis give similar policy evaluations? While there were large quanti-
tative differences in model predictions for individual
species/groups, the models generaly gave similar qualitative
results for the major groups that are targeted by fisheries. This
illustrates the capacity of EwE and Atlantis models, which differ
in structure and biological processes included in the models, to
provide consistent qualitative advice that can support strategic
management decisions. However, the present work uses scenarios
concerning highly documented species (Nile perch and hap-
lochromines). The behaviour of the models on fishing lesser-
known species needs further investigation.

Ecosystem modelling is resource-intensive and the majority of
ecosystem models that exist globally, even for similar ecosystems,
are constructed by independent research groups; practically, this
will always be the case. Model inter-comparisons, therefore,
should be emphasised as these play a major role in highlighting
scenarios that are less sensitive to model choice and for which sim-
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pler models (e.g., EwE) could still provide reliable advice for EBFM.
Although there are multiple drivers that can influence the simu-
lated fishery responses between structurally-distinct models, we
suggest that minimizing the differences in the trophic linkages
between the models, i.e., by using similar functional groupings
and feeding interactions, may help to minimise variations in fish-
ery responses due to model structure. This also implies that delib-
erate attempts should be made to improve the accuracy of diet
data through rigorous stomach content analyses, especially for
the non-charismatic groups that are always ignored during
surveys.

Both species and community level indicators are essential for
ecosystem monitoring and assessment. However, aggregating
results under community-level indicators may hide important
information and mask true ecosystem effects of fishing in cases
where opposite trends in several biological groups cancel each
other. Therefore, community-level indicators should always be
used in combination with species-based indicators. Even where
models tend to give different biomass predictions at a functional
group level, it is easier to track backwards and identify which
key ecological processes cause disparities in simulated responses
to alternative scenarios, as seen in the case of Nile perch in the pre-
sent study.
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