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Abstract

This work reports the monitoring of aquatic plants proliferation in Lake Victoria using 

satellite data over the period 2003 to 2010. The lake, which is the second largest freshwater 

body in the world and an important economic resource, is facing serious environmental 

challenges including growth o f invasive plants. The role of some selected water quality 

parameters as well as meteorological conditions in aquatic plants proliferation is also 

investigated. Multispectral MERIS (Medium Resolution Imaging Spectrometer) imagery, 

were obtained from ESA in the framework of TIGER Initiative. Images were selected on the 

basis of spatial and temporal coverage, spatial and spectral resolution and the severity of 

cloud cover. Atmospheric correction was carried out as pre-processing procedure to improve 

on the image interpretability. The images were processed using BEAM 4.8 and ENV1 4.2 

image processing and analysis software. Image derived endmembers were used to classify the 

images using linear spectral unmixing classification technique. Temporal variation of 

vegetation was obtained, and the spatial distribution was presented by cover maps. Mapping 

was done using ArcGIS 9.3. TSM and Chl-a values were retrieved from the images using 

MERIS Eutrophic Lakes Processor 1.4.1 while rainfall data was obtained from Kenya 

Meteorological Department (KMD). Spectral unmixing technique performed well with a 

mean classification accuracy o f 99.48%, based on RMSE. Most images showed a high 

concentration o f Chl-a and TSM along the shores of the lake, especially the Winam Gulf, and 

most of the aquatic vegetation was observed in the same regions. Vegetation cover in the 

Winam Gulf which was kept below 100 km2 during the years 2003 to 2006 increased to a 

peak of about 200 km2 in 2007, before decreasing again to below 100 km2 during the years 

2008 to 2010. Regression results for Winam Gulf show that vegetation abundance has a weak 

linear correlation with rainfall, TSM and Chl-a o f R = 0.67 (R2 = 0.44), R = 0.46 (R2 =0.21) 

and R -  0.57 (R = 0.32), respectively after a response period o f two to three months. From 

these relations, vegetation abundance prediction models are proposed. At no time delay, 

however, vegetation abundance showed no significant relationship with these parameters, 

while TSM and Chl-a are significantly dependent on each other with R = -0.77 (R2 = 0.6). 

While traditional methods of monitoring vegetation and water quality parameters is both 

expensive and time consuming, remotely sensed satellite data provides reliable, consistent 

and repeatable information that is suitable for this study.
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Glossary

BEAM Basic ERS and ENVISAT (A)ATSR and MERIS Toolbox

Chl-a Chlorophyll-a

CRPSM Centro di Ricerca Progetto San Marco

ECMWF European Centre for Medium-Range Weather Forecasts

ENVI ENvironment for Visualizing Images

ENVISAT ENVIronment SATellite

ESA European Space Agency

FR Full Resolution

GIS Geographic Information System

GPS Global Positioning System

IOP Inherent Optical Properties

KMD Kenya Meteorological Department

LVEMP Lake Victoria Environmental Management Project

MERIS Medium Resolution Imaging Spectrometer

NIR Near Infrared

RGB Red-Green-Blue colour composite image

RMSE Root Mean Squared Error

ROI Region of Interest

SAR Synthetic Aperture Radar

SMAC Simplified Method for Atmospheric Corrections

TOA Top o f atmosphere

TSM Total Suspended Matter

UTM Universal Transverse Mercator

WGS World Geodetic System
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1 INTRODUCTION

f. 1 Background

Lake Victoria, the largest o f all African Lakes, is also the second largest freshwater body in 

the world, with a surface area o f 68 800 km2 (Albright et al. 2004, Osumo 2001). Its 

extensive surface belongs to three countries; the northern half to Uganda, the southern half to 

Tanzania, and part of the north-eastern sector to Kenya; shared in the ratio 45%, 49% and 6% 

respectively (Osumo, 2001). The Lake Victoria basin in Kenya, Tanzania and Uganda has an 

estimated population o f 23.7 million, representing about 30% o f the total population of the 

three countries (LVFO, 2008). The lake supports one o f the largest inland fisheries, 

producing around one million tonnes per year and providing a livelihood for around 200 000 

fishermen and their families, as well as being an important source o f export revenue for the 

riparian countries (Marshall et al. 2009). It has however, since late 1980s, been faced with 

environmental challenges and human impacts which have perturbed the ecological balance 

affecting its biodiversity (Gichuki, 2010). The most prevalent o f them is the growth of 

aquatic plants, especially the water hyacinth (Mailu et al. 2000).

Efforts to control the aquatic plants have been made, attracting organizations like World 

Bank in conjunction with the three riparian countries through the LVEMP, and ESA through 

the TIGER Initiative. ESA, under its TIGER Initiative, launched a capacity building 

campaign, with the aim o f training on conservation of water resources in Africa.

Monitoring aquatic vegetation in an extensive area, as in the case o f Lake Victoria, can be 

quite challenging as it require constant collection of data, and mapping activities typically 

require the collection o f extensive ground-truth data. Remotely sensed data, however, have 

the potential to provide much o f the necessary detailed information, e.g. extent and 

distribution o f vegetation in the lake (Jollineau and Howarth, 2002). Remotely sensed 

satellite data provides consistent and repeatable information (Albright et al. 2004). MERIS 

FR imagery used in this study has both the spatial (300 m) and spectral (400 -  900 nm) 

resolution, as well as adequate revisit period (three days) that is suitable for the study.
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1.2 Study area

1.2.1 Lake Victoria: Geographic location

It stretches 412 km from north to south between 0° 30' N and 3° 12' S and 355 km from west 

to east between 31° 37' E and 34° 53' E. It lies across the equator at an altitude of 1135 m 

above sea level. Its extensive surface belongs to the three countries; the northern half to 

Uganda, the southern half to Tanzania, and part of the northeastern sector to Kenya; shared 

among the riparian countries in the ratio 45%, 49% and 6% respectively (Osumo, 2001). 

Figure 1-1 is a map showing the geographic location of the lake.
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Figure 1-1: Geographic location o f Lake Victoria. Inset is the location of Lake Victoria in Africa. 

Also inset (enclosed in red) is the zoomed-in Winam Gulf section o f the lake. Spatial data obtained 

from DIVA-GIS (2011) • ,
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1.2.2 Lake Victoria: Physical dimensions

The lake is relatively shallow, with a recorded maximum depth o f about 84 m and an average 

depth of 40 m. It has a water volume of about 2 750 km3. It has a long indented shoreline 

(about 3 440 km), enclosing innumerable small, shallow bays and inlets. It contains numerous 

islands (Osumo, 2001). Table 1-1 gives the physical dimensions o f the lake.

Table 1-1: Physical dimensions o f  Lake Victoria. Data source: ILEC (2012)

Surface area [km ] 68 800

Volume [km3l 2 750

Maximum depth [m] 84

Mean depth [m] 40

Water level Regulated

Length o f shoreline [km] 3 440

Residence time [yr] 23

Catchment area [km ] 184 000

1.2.3 Lake Victoria: Drainage basin

The Lake Victoria basin in Kenya, Tanzania and Uganda has an estimated population o f 23.7 

million, representing about 30% of the total population of the three countries (LVFO, 2008). 

The catchment o f Winam Gulf in the Kenyan side o f the lake is the main water catchment for 

the whole lake, and lies between 1000 to 2000 m above sea level (Osumo, 2001). The main 

rivers flowing into the lake from the Tanzanian catchment are Mara, Kagera, Mirongo, 

Grumeti, Mbalageti, Simiyu and Mori. From the Kenyan catchment, the main rivers are 

Nzoia, Sio, Yala, Nyando, Kibos, Sondu-Miriu, Kuja, Migori, Riaria and Mawa, while from 

the Ugandan catchment the main rivers are Kagera, Bukora, Katonga and Sio.
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1.3 Statement of the problem

Water hyacinth and other aquatic plants pose serious problems to Lake Victoria. These 

include obstruction to navigation, fishing and interference with other aquatic life. To 

effectively control the proliferation o f these invasive plants, reliable information on the 

identification o f the infested areas and the extent of the infestation, as well as the rate o f 

proliferation is required. Control o f the plants using mechanical and biological methods both 

require proper timing o f activities. A time series monitoring o f aquatic plants is needed to aid 

in decision making regarding the type of control action that is most suitable for the prevailing 

conditions, proper timing o f the aquatic plants control activities, as well as assessing the 

efficacy of such activities.

1.4 Objectives /  Goal

The aim of this research is to use satellite data to monitor the spatial distribution and temporal 

variation o f the abundance o f aquatic plants in Lake Victoria in the period 2003 -  2010. It is 

also aimed at finding out whether there exists a correlation between the time series variation 

of vegetation with some selected water quality parameters. In principle, such a correlation 

would be useful in developing algorithms for the prediction o f the state o f growth of the 

plants based on the conditions o f the concentrations of the water quality parameters.

1.4.1 Specific objectives

The specific objectives o f this project are;

1. To obtain spectral signatures o f the dominant image constituents in the lake and 

develop an endmember spectral library

2. To use spectral unmixing technique to classify images and obtain cover-maps for the 

lake

3. To use the classified images to estimate the abundance o f the aquatic plants in the 

lake
• *

4. To obtain the temporal (time series) variation of aquatic plants abundance (vegetation

phenology) <-

5. To find out if there exists a correlation between the aquatic plants distribution and 

Chl-a and TSM water quality parameters as well as rainfall.
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1.5 Hypothesis

It is a known fact that aquatic plants exist in Lake Victoria, and they cause undesirable 

effects. But how do these plants vary spatially? Are some areas more prone to aquatic plants 

infestation? Do they vary temporally? If they do, could such variations be estimated using 

satellite data? Could this proliferation be accelerated by the conducive environment provided 

by some water quality parameters like Chl-a and TSM, introduced into the lake through 

nutrient enrichment caused by rain in its drainage basin? If it does, does a direct time 

relationship exist between these parameters and the aquatic plants abundance in the lake, so 

that an increase in aquatic plants abundance is preceded shortly by a rise in concentrations of 

Chl-a and TSM? By studying the temporal variation o f these water quality parameters, is it 

possible to predict the future occurrence o f ‘abnormal growth’ o f the aquatic plants, and 

make appropriate plans to control them?

1.6 Report outline

This study is introduced in chapter one, where a brief description o f the study area is given. 

Chapter two discusses literature review. Chapter three describes the theoretical background 

and discusses the concept o f multispectral imaging and classification based on the spectral 

response o f various class features using the spectral unmixing technique. K-means clustering 

as an unsupervised classification technique is also briefly discussed and a brief description of 

the two selected water quality parameters, Chl-a and TSM, is given in this chapter.

The methodology used to achieve the specific objectives is described in chapter four, where 

data requisition and selection criterion is described. Reprojection and atmospheric corrections 

as image preprocessing procedures as well as classification procedures are also described 

here. Classification results and accuracy assessment are presented in chapter five. Mapping 

and monitoring o f the spatial and temporal variation o f vegetation and water quality 

parameters as well as their correlations is presented in this chapter, with sample maps given. 

Analysis and discussions are also given here.

Conclusions and recommendations dre presented in chapter six.

\
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2 LITERATURE REVIEW

Over the years, since its infestation in the late 1980’s, the rise and fall in the aquatic plants 

abundance in Lake Victoria has been reported. Researchers have suggested that the rise could 

be caused by nutrient enrichment in the lake. The fall on the other hand is mainly due to the 

weed control activities carried out in the lake. Debate arose, however, on whether the decline 

of water hyacinth abundance in 1998 and later years was due to the biological factors or due 

to the 1997-1998 El Nino weather pattern that caused stormy and wet weather in the region 

(Albright et al. 2004 and Wilson et al. 2007). With availability o f periodic and frequent flow 

of satellite data, and accurate and reliable monitoring techniques, such uncertainties would 

not occur.

Several methods have been used to control the proliferation o f the aquatic plants in Lake

Victoria, which include mechanical (shredding of the weed using the ‘Swamp Devils’) and

biological (introducing water hyacinth weevils) (Wilson et al. 2007). However, the choice of

the control method to employ and the proper timing of such control activities has remained a

challenge to all these methods. Biological method, for instance, requires proper timing on the

release o f the weevils (Gichuki, 2010). During its early stages o f infestation, until early

2000s, the available information pertaining to the extent, distribution, and status of water

hyacinth in Lake Victoria was largely based on anecdotal accounts, local field observations,

and rough estimates (Albright et al. 2004). Schouten et al. (1999) demonstrated the potential

of synthetic aperture radar (SAR) imagery for estimating water hyacinth distribution and

extent by providing estimates on three dates in 1998 for selected bays in Uganda and Kenya.

The need for reliable information to gauge the severity o f the aquatic plants infestation

through time, and to relate its abundance to environmental factors, identify areas requiring

management action, and assess the efficacy of such actions was highlighted by Albright et al.

(2004). Remotely sensed satellite data provides consistent and repeatable information. There

is therefore a greater need to accurately map and monitor wetlands and their change
• *

(Jollineau and Howarth, 2002). Referring to Lake Cuitzeo in Mexico, Ramirez (2006) 

recommended timely generation o f  vegetation maps for the continued monitoring o f the 

changes and relations in the lake.
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Lake Victoria covers a very large spatial extent, and is therefore not very easy to accurately 

determine the extent o f growth o f aquatic plants in it. Remote sensing, however, affords a 

good estimation by exploiting the spectral features of the image constituents to characterize 

the remotely sensed satellite images. Spectral feature is regarded as one o f the most important 

pieces of information for remote sensing image interpretation (Qian and Ping, 2007). This is 

especially true for Lake Victoria because the most dominant image constituents i.e. water and 

vegetation, have very unique spectral characteristics (spectral signatures), which satellite 

sensor can detect, and can easily be distinguished using any classifier (Kahlid and 

ConocoPhillips, 2005). An image is classified by comparing the spectral characteristics of its 

constituents with the spectral signatures of the known features (endmembers). Multispectral 

satellite imagery like MERIS allows identification of features by exploiting their spectral 

responsiveness. MERIS sensor has fifteen spectral bands in the visible and part o f NIR 

regions, ranging from 412.5 nm to 900 nm (ESA, 2010).

In order to effectively use the satellite remote sensing data for land-use and land-cover 

applications, an appropriate image classification technique must be identified. Akgiin et al. 

(2010) emphasized on the selection o f the most proper satellite image, band combination, and 

the classifier for more effective use o f the satellite remote sensing information. Spectral 

feature is a key tool in classifying images so as to generate cover maps. The most unique 

features of vegetation’s spectral responsiveness which allow them to be discriminated 

especially from water are found in the visible and NIR regions, which fall within the range of 

acquisition o f MERIS data (400 -  900 nm). It also has a swath width o f 1150 km, which is 

wide enough to adequately cover the lake. Furthermore, the provision o f MERIS imagery by 

ESA for this study and the freely available image processing software for MERIS (BEAM) 

prompted the selection o f such data for the project. Incorporated into BEAM also are the bio- 

optical methods for retrieving water quality parameters from atmospherically corrected 

MERIS imagery.

I
Several classifiers exist, which include parallelepiped, minimum distance to mean and

• t •
maximum likelihood. However, these conventional classification algorithms have a 

shortcoming of assuming that each pixel consists o f only a single endmember (Foppa et al. 

2002). When these algorithms are applied, for example, to estimate vegetation cover, they 

require some threshold value to discriminate vegetation from other image constituents and 

generate binary maps containing ‘vegetation’ or ‘not vegetation’. In practice, this is usually

7



not true since most pixels contain several classes o f cover types, especially when the spatial 

resolution is relatively low. MERIS images, for example, have spatial resolution of about 300 

m (ESA, 2010), so that one pixel extents over a large surface area which might cover more 

than one class features.

Spectral unmixing is a more sophisticated classification technique, which is based on the 

assumption that the spectrum of a pixel consists o f a linear combination o f the spectra of 

several individual land cover types at various proportions (abundances) (Foppa et al. 2002, 

Kumar et al. 2007, Matthias and Martin 2003 and Ramirez 2006). Linear mixture modeling 

considers that the signal received at the sensor is composed o f a linear mixture of pure- 

element reflections (endmembers), where the weights are the percentage o f the pixel area 

occupied by each element. Ideally, if  all the endmembers were accurately identified 

spectrally, then the abundance values of all the endmembers in a pixel would sum to unity. A 

certain amount o f error is however inevitable for different reasons (Foppa et al. 2002), so that 

accuracy o f a linear mixture model is measured by the amount o f error. For this model to 

work properly, two constraints are set; that the abundance values o f all endmembers plus the 

residual (called the error) must sum up to unity, and that the abundance value must be 

positive.

Linear spectral unmixing has been used in several studies in various fields, which include 

snow cover estimation (Foppa et al. 2002), land cover mapping (Kumar et al. 2007), and 

imperviousness o f surface distributions (Matthias and Martin, 2003). Before applying the 

linear spectral unmixing, endmembers for the given study area must be defined by a process 

called data training. The endmember spectra can be derived either from the image to be 

classified (image derived endmembers) or from field (in situ) measurements (field derived 

endmembers). Field derived endmembers are obtained by taking in situ measurements of the 

reflectance values o f the targeted species using a field spectroradiometer. The maximum 

number of endmembers is, however, limited by the number o f spectral bands o f the satellite 

image (Foppa et al. 2002).

It has been established that vegetation is influenced greatly by its environmental factors, so 

that vegetation information can be derived from the knowledge o f the relationship between 

the vegetation and its environment (Zhigang and Zhuang 2007). The possibility that the 

Problem of macrophyte encroachment in Lake Victoria is greatly enhanced by nutrient

8



enrichment was suggested by Muli (1996). Subsequent studies by Osumo (2001) highlighted 

the need for a study in nutrient fluxes into the lake, in order to control the problem.

In this work spectral unmixing is applied to detect vegetation in the lake by exploiting its 

spectral features, so as to map its spatial distribution and obtain a time series variation over 

the study period. Further, by establishing the influence o f factors like TSM, Chl-a and rainfall 

on the growth o f aquatic vegetation, a means to predict vegetation abundance is proposed.

9



3 THEORETICAL BACKGROUND

3.1 Concept of multispectral images

A multispectral (and hyperspectral) image is one obtained by detecting the spectral response 

of a scene in more than one spectral band. Pixel values in each band represent the reflectance 

of the image constituents at that particular wavelength region. Figure 3-1 is an illustration of 

the multispectral imagery.

Figure 3-1: Graphical illustration o f  multispectral imagery

3-2 Spectral signatures

Objects respond differently to radiation o f different electromagnetic range. Spectral 

characteristic o f a material is 'its response to electromagnetic radiation at different 

wavelengths. Table 3-1 is an example of an endmember library.

10



Table 3-1: Example o f  an endmember spectral library for water and vegetation. Data generated from

an image in BEAM

Reflectance values

Wavelength (nm) Water Vegetation

412.691 0.027391 0.015167

442.559 0.02766 0.020045

489.882 0.02758 0.025904

509.819 0.02695 0.031417

559.694 0.027664 0.059096

619.601 0.022619 0.051995

664.5731 0.022334 0.048802

680.821 0.022509 0.049704

708.329 0.022529 0.112117

753.371 0.020584 0.243117

761.5081 0.02485 0.240286

778.4091 0.0208 0.257854

864.876 0.021636 0.284601

884.944 0.021182 0.29052

900.0001 0.031679 0.351611

Figure 3-2 is a graphical illustration o f the spectral signatures.

Figure 3-2: A graphical illustration o f an endmember spectral library with signature spectra o f  

vegetation and water. Data generated from an image in BEAM
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3.3 Principles of classification

The spectral properties o f a remote sensor can be used to classify images. Different objects 

(class features) have varying response to electromagnetic radiation at different spectral 

ranges, leading to unique spectral signatures for each class feature. Ideally, all pixels covering 

the same class feature would have exactly the same spectral signatures, so that any pixel in an 

image with that signature would be identified as that very class feature for which the 

signature represents. Classifying an image in this manner for several class features would end 

up in a map of classes. In reality, however, a pixel often covers more than one class features 

so that its resultant spectral response is not exactly the same as that o f a pure class feature but 

rather produce a variety o f spectral signatures.

To deal with variability, a pixel’s reflectance is represented in an n-dimensional space, so that 

it occupies a point in that space. This effectively places pixels o f each feature class at 

different points in the n-dimensional space. Here, ‘n’ is the number of spectral bands. 15- 

band MERIS images, for instance, have 15 spectral dimensions, and each pixel represents a 

point in a 15-dimensional space. With variability, the pixels o f each feature class now occupy 

a region, not a point, o f n-dimensional space. Vegetation pixels, for example, occupy a 

different region from that o f water in the n-dimensional space. In principle, to classify an 

image is to delineate boundaries o f classes in n-dimensional space and assign class names to 

pixels using those boundaries.

3.3.1 Classification by spectral unmixing

Spectral unmixing is a supervised classification technique which is based on the principle that 

the spectral response o f a pixel at any given wavelength region is a linear combination o f the 

spectral responses o f several individual class features present in that pixel at that wavelength, 

the contribution o f each depends on its respective abundance. According to BEAM (2010) the 

reflectance, Rk o f a pixel at wavelength k can be expressed as below;

where

and

R k~1LarE i,k  +  Sk ( 1)

(2)
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° < a < 1 (3)

Ei,k is reflectance o f endmember i at wavelength k, a, is the abundance o f endmember 

n is the number o f endmembers, and e* is the error at wavelength k.

Equations (2) and (3) introduce the constraints that fractions (abundance) sum to one and are 

non-negative. The system of linear equation shown above can be solved by a least square 

solution which minimizes the sum of squares o f errors. The accuracy of the unmixing is 

based on £k of equation (1), squared and summed over all m channels and is expressed as 

below

-m
RMSE =, t e l1 k

(4)

where m is number o f wavelengths in the discrete spectrum.

The spectrum of a pixel can thus be expressed in terms o f the individual endmember spectra. 

With the knowledge o f the spectral characteristics o f each o f the land cover types (called the 

endmembers), the spectra can thus be classified into its constituent spectra. This analysis 

results in abundance maps, as many as the defined endmembers.

3.3.2 K-Means clustering

K-means (MacQueen, 1967) is one o f the simplest unsupervised classification algorithms that 

solve the well-known clustering problem. The procedure follows a simple and easy way to 

classify a given data set through a certain number of clusters (assume k clusters representing 

k feature classes) fixed a priori. The main idea is to define k centroids, one for each cluster. 

The first step is to randomly choose k pixels whose samples define the initial cluster centres. 

The next step is to assign each pixel to the nearest cluster centre as defined by the Euclidean 

distance, thus completing the first groupage. Next step is to recalculate the cluster centres as 

ihe arithmetic means o f all samples from all pixels in a cluster, from which a new binding has 

t0 be done between the same data set points and the nearest new centroid. At this point, a 

i°°p (iteration) has been generated'. As a result of this loop the k centroids change their 

location step by step. This loop is repeated until the convergence criterion is met. The 

convergence criterion is met when the specified maximum number o f iterations is exceeded
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0r when the cluster centres do not change between two iterations. Finally, this algorithm aims 

at minimizing an objective function, in this case a squared Euclidean distance function;

(5)

which is an indicator o f the distance o f the n data points from their respective cluster centres,

Figure 3-3 is an illustration o f  how class means mi and m2 move into the centres o f two 

clusters.

3.4 Water quality parameters

In this study, two water quality parameters were considered; the concentrations of 

chlorophyll-a (Chl-a) and the total suspended matter (TSM). The concentrations of these 

parameters were retrieved from satellite data using algorithms that derive data of their 

Inherent Optical Properties (IOPs) at 443 nm (MERIS band 2), from which the concentration values 

are computed. Lake water constituents comprise a large number of different substances, which include
. • t

mineralic dissolved and particulate compounds, a large variety of organic macromolecules, living 

organisms such as phytoplankton, zooplankton and bacteria, and their debris and excrements. All of 

these water constituents have different optical properties concerning scattering and absorption and 

partly fluorescence (Doerffer and Schiller, 2008 (a)).

where ||jc!>,-c,|| is the distance measure between a data point *o) and the cluster centre Cj •

Start

Star

Final
Boundary

Figure 3-3: An illustration of K-Means clustering. Source: Matteucci (2010)
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3.4.1 Chlorophyll-a (Chl-a)

Chlorophyll a is a type o f chlorophyll that is most common and predominant in all oxygen- 

evolving photosynthetic organisms such as higher plants, red and green algae. It highly 

absorbs electromagnetic radiation in the 400 -  450 nm and 650 -  700 nm wavelength ranges. 

Its molecular formula is C ss I^ O s^ M g . Chlorophyll is the green pigment that allows plants 

(including algae) to convert sunlight into organic compounds during photosynthesis. O f the 

several kinds o f chlorophyll, chlorophyll a is the predominant type found in algae. High 

amounts of chlorophyll a in the bay's waters are an indicator o f nutrient pollution because 

excess nutrients fuel the growth of algae.

Chlorophyll a is often used to measure the amount of algae present in the bay. The bay needs 

the right amount o f algae to maintain a balanced food web. Too much algae can cause large- 

scale algae blooms that block sunlight from reaching underwater bay grasses, which are an 

important habitat for fish, crabs and other bay life. They eventually sink to the bottom and 

decay in a process that depletes deeper waters o f oxygen, and they have negative impacts on 

both underwater life and human activities (including swimming, boating and fishing).

A dissolved substance may be identified by the unique pattern o f wavelengths absorbed, since 

every substance has a unique response to electromagnetic radiation. Chlorophyll in plants 

absorb strongly in the blue wavelengths (about 450 nm) and red wavelengths (about 650 nm) 

but reflect in the green wavelengths (about 525 nm), explaining why leaves are green. A plot 

of absorbance versus visible wavelengths (400 to 700 nm) for a solution o f chlorophyll 

(Figure 3-4) shows two major peaks, one at around 400 nm and one at around 700 nm, and a 

valley from 500 to 625 nm. This spectrum is characteristic for chlorophyll a for 

identification.
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Figure 3-4: A diagram showing the absorbance characteristics o f Chlorophyll. It shows two major 

peaks at around 400 nm and 700 nm. Source: Harrison (2010)

3.4.2 Total suspended matter (TSM)

Total Suspended Matter (TSM), also called Total Suspended Solids (TSS), is a water quality 

measurement (initially called non-filterable residue (NFR)), which refers to the dry-weight of 

particles trapped by a filter, typically of a specified pore size. TSM is defined, at the lower 

end by a cut-off established by properties of the filter being used (pore size) and at the upper 

end by the exclusion of all particulates too large to be suspended in water. Traditionally a 

pore size of 0.45 pm was used to define TSM, but nowadays 0.2 pm is used (Doerffer and 

Schiller, 2008 (a)).

TSM of a water sample is determined by pouring a carefully measured volume of water 

(typically one litre; but less if the particulate density is high, or as much as two or three litres 

for very clean water) through a pre-weighed filter of a specified pore size, then weighing the 

filter again after drying to reipove all water. The gain in weight is a dry weight measure of 

the particulates present in the water sample expressed in units derived from the volume of 

water filtered (typically milligrams per litre).
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If however, the water contains an appreciable amount o f dissolved substances (as certainly 

would be the case when measuring TSM in sea water), these will add to the weight o f the 

filter as it is dried. Therefore it is necessary to wash the filter and sample with deionized 

water after filtering the sample and before drying the filter. Failure to include this step when 

working with sea water samples would completely invalidate the results as the weight of salts 

left on the filter during drying could easily exceed that of the suspended particulate matter.
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4 METHODOLOGY

4 1 Image data requisition and selection criteria

Data used in this study are those taken by satellite borne sensor; Medium Resolution Imaging 

Spectrometer (MERIS), on board ESA’s environmental research satellite, ENVISAT. MERIS 

data was obtained from ESA in the framework of TIGER Initiative. Table 4-1 below shows 

the MERIS product specifications.

Table 4-1: MERIS product specifications. Source: Sotis (2007)

Channel
Number

Centre
Wavelength (nm)

Bandwidth
(nm) Application

1 412.5 10 Yellow substance and detrital pigments

2 442.5 10 Chlorophyll absorption maximum

3 490 10 Chlorophyll and other pigments

4 510 10 Suspended sediment, red tides

5 560 10 Chlorophyll absorption minimum

6 620 10 Suspended sediment

7 665 10 Chlorophyll absorption and fluorescence reference

8 681.25 7.5 Chlorophyll fluorescence peak

9 708.75 10 Fluorescence reference, atmospheric corrections

10 753.75 7.5 Vegetation, cloud

11 760.625 3.75 Oxygen absorption R-branch

12 778.75 15 Atmosphere corrections

13 865 20
•  *

Vegetation, water vapour reference

14 885 10 Atmosphere corrections

15 900 HO Water vapour, land
4
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The level one MERIS Full Resolution products ( M E R F R 1 P )  are geocoded with calibrated 

TOA radiance and spatial resolution which varies in the across track direction, between 0.26 

jyn at nadir and 0.39 km at swath extremities. Along-track sampling is close to 0.29 km 

(ESA, 2010). Its spectral resolution includes visible and NIR bands from 400 nm to 900 nm, 

and has a revisit time of three days. It also has the resampled ECMWF data: mean sea level 

pressure, total column ozone, total column water vapour and wind speed.

Images were selected on the basis of acquisition time, image area coverage, spatial and 

spectral resolution and the severity o f cloud cover. Figure 4-1 is a flow chart which shows 

the criterion for selection o f image data for the study.

, figure 4-1: A flow chart showing the procedure for image data selection

Of the 174 images that were ordered and received from ESA, 31 were rejected due to 

insufficient lake coverage. Another 128 images were rejected since they fell beyond the set 

Percentage cloud cover threshold of, 5% of the image, leaving only 15 images for analysis. 

For water quality assessment, however, 93 images of Winam Gulf spread over the study 

Period were used. Table 4-2 shows the image dates and product specifications for data used to

study the whole lake.
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Table 4-2: Image acquisition dates and product specifications for data used. Source: ESA (2010)

Arauisition d a te P la tfo rm /S e n s o r /R e s o lu t io n P e rc e n ta g e  c lo u d  co v e r

7 6 /1 2 /2 0 0 3 E n v is a t/M E R IS /3 0 0  m 1 .1 0

7 1 /0 2 /2 0 0 5 E n v is a t/M E R IS /3 0 0  m 0 .1 5

i  7 /0 7 /2 0 0 5 E n v is a t/M E R IS /3 0 0  m 0 .6 7

n 7 /0 1 /2 0 0 6 E n v is a t/M E R IS /3 0 0  m 2 .6 1

0 6 /0 2 /2 0 0 6 E n v is a t/M E R IS /3 0 0  m 0 .0 9

1 6 /0 8 /2 0 0 6 E n v is a t/M E R IS /3 0 0  m 1 .5 1

1 2 /1 0 /2 0 0 6 E n v is a t/M E R IS /3 0 0  m 4 .8 1

2 0 /0 2 /2 0 0 7 E n v is a t/M E R IS /3 0 0  m 0 .0 3

2 7 /0 9 /2 0 0 8 E n v is a t/M E R IS /3 0 0  m 2 .4 3

1 4 /0 2 /2 0 0 9 E n v is a t/M E R IS /3 0 0  m 0 .9 2

2 1 /0 3 /2 0 0 9 E n v is a t/M E R IS /3 0 0  m 2 .8 6

1 2 /0 6 /2 0 0 9 E n v is a t/M E R IS /3 0 0  m 1 .2 7

0 2 /0 8 /2 0 0 9 E n v is a t/M E R IS /3 0 0  m 1 .6 3

2 8 /0 9 /2 0 0 9 E n v is a t/M E R IS /3 0 0  m 2 .5 7

1 2 /0 2 /2 0 1 0 E n v is a t/M E R IS /3 0 0  m 1 .1 5

0 3 /0 8 /2 0 1 0 E n v is a t/M E R IS /3 0 0  m 2 .8 5

4.1.1 Cloud cover evaluation

Only the images which are less severely covered by clouds were selected and used for the 

study. BEAM 4.8 was used to determine the severity of cloud cover in the images. Clouds are 

easily detected when a manual classification of satellite images is done, their automatic 

detection is difficult. Clouds have four special radiative properties that enable their detection: 

1) clouds are white, 2) clouds are bright, 3) clouds are higher than the surface and 4) clouds 

are cold. However clouds, as the most variable atmospheric constituent, seldom show all four 

properties at the same time. Thin clouds show a portion o f the underlying surface spectral 

properties, and low clouds are sometimes quite warm. Additionally some surface types, like 

snow and ice have spectral properties that are very similar to some of the cloud properties 

(BEAM, 2010).

Considering Lake Victoria, where water and vegetation are the only dominant features (for 

there is no land or built-up area in the lake, except of course, the islands and boats), the 

brightness’ attribute o f clouds alone is sufficient to accurately identify clouds in the image.

is attribute was used to estimate 'the severity o f clouds cover in the image. A percentage 

threshold value o f bright (cloud-covered) pixels over the whole image was set, to select the 

■magesto used for the study. Only images with less than 5% cloud cover were selected.
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Image processing procedures involved image pre-processing, image classification and 

extraction of results by applying the ROI (Region of Interest) to limit the results to just within 

the lake. Analysis and presentation o f results involved water quality analysis, mapping and 

regression analysis. These procedures are presented in a flow chart in Figure 4-2.

4,2 Image processing

Figure 4-2: A flow  chart showing image processing and analysis procedures
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Due to the sensitive nature o f spectral studies, pre-processing o f satellite images prior to 

vegetation extraction is essential to remove atmospheric effects and increase the 

interpretability o f image data (Idawo et al. 2004). The acquired images were processed using 

BEAM4-8 and ENVI 4.2 image processing and analysis software. Before any processing was 

done, the images were first resized (creation of a spatial subset of the area o f interest). The 

spatial subset is more convenient because it takes lesser processing time than the full scene 

and, of course, less storage space. The image pre-processing procedures performed include 

atmospheric corrections and reprojection o f the images, and are briefly discussed below.

4 2.1 Image pre-processing

4.2.1.1 Reprojection
The images were projected in a Universal Transverse Mercator (UTM) Zone 36S coordinate 

system and World Geodetic System (WGS) 84 Datum, and resampled using the nearest 

neighbour technique, which preserves the spectral integrity o f the image pixel. WGS defines 

a reference frame for the earth, for use in geodesy and navigation. The latest revision is WGS 

84 dating from 1984 (last revised in 2004), and is valid up to about 2010 (WGS, 2011). 

Earlier schemes included WGS 72, WGS 66, and WGS 60. WGS 84 is the reference 

coordinate system used by the Global Positioning System (GPS). The reprojection step was 

particularly necessary for purposes o f mapping.

4.2.1.2Atmospheric correction
The first level images received from ESA have the radiance values as detected by the sensor 

at the top of the atmosphere (TOA). However, as the electromagnetic radiations propagate 

through the atmosphere, they are affected by it, and are reflected, refracted, absorbed or 

transmitted. To obtain radiance values as at the surface, atmospheric corrections must be 

performed, which take into account the attenuation due to atmospheric absorption and 

radiance of the scattered skylight.

• *

A Simplified Method for Atmospheric Corrections o f satellite measurements SMAC 

Processor 1.5.203 (Rahman et at. 1994) incorporated in BEAM was used to perform 

atmospheric corrections on the images. It is a semi-empirical approximation of the radiative 

transfer in the atmosphere. The signal at the satellite is written as the sum of the following
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components, which are then expressed in simple analytical terms: Atmospheric spherical 

albedo, Total atmospheric transmission, Rayleigh scattering and Aerosol scattering.

Rayleigh scattering is the elastic scattering of the electromagnetic radiation by particles much 

smaller than the wavelength o f the radiation, which may be individual atoms or molecules. 

Rayleigh scattering can be defined as scattering in the small size parameter regime;

2nx
« 1 (6)

where r is the characteristic dimension o f the particle and X the radiation wavelength.

With SMAC technique the radiative transfer in the atmosphere can be computed much faster 

than with a full model. A comparison has shown that the gain in computation time is several 

hundred times in comparison with the full model (BEAM, 2010). Because of its "speed", this 

method is best suited for application to large data volumes.

The SMAC requires as input, in addition to the measured top o f atmosphere radiances, the 

surface pressure, the ozone content and the water vapour content, and, most importantly, the 

aerosols. Continental aerosol model was selected, with the default aerosol optical depth o f 0.2 

at 550 nm, while ECMWF meteorological data for pressure, ozone and humidity was used. 

ECMWF data files contain meteorological information for each pixel. To mask out clouds in 

the image, the code below that is in-built in BEAM was used:

(77 Jlags.LAND OCEAN or water) and not (11 Jlags.INVALID or 11 Jlags. BRIGHT)

This masks out the invalid and bright (cloud) pixels, while retaining water masks in the 

image.

4-2.2 Classification
f

4-2.2.1 Creating a spectral library (an endmember file)

An endmember file is a compiled <list o f spectral signatures, with a signal file for every 

informational class containing spectral characteristics o f the cover classes they describe. 

Endmembers can be derived from the image (image derived endmembers), or measured in the 

field using a field spectroradiometer (field derived endmembers). Image derived endmembers
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were used in this study, as opposed to field derived endmembers because they are in the same 

state as the image from which they are derived, so that the effects o f atmospheric distortions 

and inaccuracies in the atmospheric corrections are minimized. Proper definition of 

endmember file is crucial when using spectral unmixing classification technique since the 

classification results are greatly determined by the input signatures. Much attention was given 

to the derivation o f the endmember file that was used for classification.

A field study was conducted on 14 December 2010. During the field study, the geographic 

coordinates o f the location in the lake that was covered by vegetation was taken using a GPS 

receiver. Water hyacinth, which is the predominant aquatic vegetation species in the lake, is 

free-floating and is therefore highly dynamic. It is easily carried away by tides and wind. On 

the date of the study, however, there was a huge piece of the hyacinth mat, with outgrowth of 

other aquatic vegetation, which had been trapped by the shore o f the lake along the Rakwaro 

and Kisiege beaches for close to three months according to the local residents. This was an 

assurance that any image acquired within this period would contain the desired class feature 

static in the same location, so that a one day field work was sufficient to collect the 

geographic coordinates o f the identified training site. It was about a kilometre into the lake, 

and at least a kilometre along the shore. This was large enough to be represented by several 

pixels of a MERIS FR image with spatial resolution o f about 300 m.

A satellite image of 15 December 2010 was used to extract the vegetation signatures. Eight 

pixels were selected, at one pixel accuracy, at different points within the vegetation mat, and 

their respective signatures extracted, from which the mean signature o f the vegetation was 

computed.

Four major ‘water species’ were visually identified from the resulting image of an
I

unsupervised classification (see section 5.1). Eight pixels were selected at one pixel accuracy

from each of these four regions, from which the spectral signatures were extracted, and an

average spectrum computed. The signatures o f the four water classes together with the
• *

extracted vegetation signature were then compiled into a spectral library, called the 

endmember file, which was then used to classify the image.
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4 2 .2 . 2 Classification o f the Image

In this stage o f classification, spectral unmixing technique was applied to derive the 

abundances o f the feature classes specified in the endmember spectral library. The library 

defined earlier (section 4.2.2.1) was used as an input spectral data to BEAM 4.8 spectral 

unmixing program which applied the unmixing algorithm described in equation (1) to derive 

the abundance values and equation (4) to derive the RMSE values o f each pixel. These 

abundance values were then displayed in cover maps.

4.2.3 Shapefile (Shoreline)

Digitization o f the lake was done using ENVI 4.5. The lake shapefile was necessary for 

extracting the classification results from just within the lake area. The accuracy of area 

estimation is subject to the accuracy o f the shapefile (or Region of Interest, ROI). A shapefile 

was created by digitizing an RGB of a selected clouds free MERIS FR imagery o f February 

20, 2007. Google maps were used to identify the islands and to distinguish them from the 

floating mats of vegetation.
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5 RESULTS, ANALYSIS AND DISCUSSION

5.1 Classification results

5.1.1 Endmember extraction

Unsupervised classification of a selected clouds-free image using K-Means clustering 

produced four major classes of water, two in the main lake and two in the Winam Gulf. These 

are the predominant water ‘species’ in the lake. The number of endmembers was determined 

visually from the classified image by considering only the major class features within the 

lake. Figure 5-1 below shows the results of this classification process. The reflectance spectra 

of each of these feature classes were then extracted.

32* 0"0t 33* ODt 34*00-E 35*00t 36*0U*E
__I__________ I__________ I__________ I__________ I__

--- 1----------------1----------------1----------------1----------------1---
32*0Uf 33* OUt 34* O'Of 36*0Ut 36*0Ut

Figure 5-1: Results o f unsupervised classification on a Lake Victoria image using K-Means 

clustering There are four major classes o f water, two in the main lake and two in Winam Gulf. Inset 

is the Winam Gulf section o f the lake
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Eight pixels were selected from each of the identified feature classes, as shown in Figure 5-2 

below, with one pixel accuracy. The reflectance spectra of these pixels were extracted from 

which their average class spectra were computed.
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Figure 5-2: Identification of training sites and endmember extraction from atmospherically corrected 

image This is an RGB image of the main lake. Inset is the zoomed-in Winam Gulf section

The reflectance values at each of the fifteen MERIS bands were extracted, and the spectral 

signatures for each of the feature classes were derived. Table 5-1 show the reflectance values 

for each of the selected pixels, PI -  P8, and their mean values representing the spectral 

response of Water l class feature.

27



Table 5-1: W aterl individual pixel reflectance values

W a v e le n g th PI P 2 P 3 P 4 P 5 P 6 P 7 P 8 Water_l

412.69101 0.0132147 0.0131077 0.0115945 0.0098727 0.0134366 0.0104973 0.0114912 0.0113837 0.0118248

442.55902 0.0112426 0.0112499 0.0095101 0.0079339 0.0118167 0.0098039 0.009737 0.0108213 0.0102644

489.88202 0.0118186 0.0117735 0.0098772 0.0082228 0.0124392 0.0096512 0.0097625 0.0112612 0.0106008

509.81903 0.0110075 0.0117452 0.0095283 0.0085097 0.0126787 0.0096517 0.0095362 0.0115427 0.010525

559.69403 0.0115682 0.0113118 0.0094022 0.0083787 0.0126597 0.0091801 0.0093778 0.0108761 0.0103443

619.60101 0.0061982 0.0060046 0.0043947 0.0029848 0.0078289 0.0042684 0.0052345 0.0051692 0.0052604

664.57306 0.0052098 0.005579 0.0040816 0.0025985 0.0073935 0.0042993 0.0044359 0.0049591 0.0048196

680.82104 0.0057271 0.0060234 0.004552 0.0033108 0.0079726 0.0045227 0.0049812 0.0051281 0.0052772

708.32904 0.0056269 0.00582 0.0044304 0.0029433 0.0075176 0.004107 0.0045327 0.005123 0.0050126

753.37103 0.0032821 0.0034904 0.0022164 5.21E-04 0.0051692 0.0018934 0.0022585 0.0030032 0.0027292

761.50806 0.0079266 0.0069151 0.0056907 0.0057392 0.0076806 0.0055601 0.0056548 0.0069868 0.0065193

778.40906 0.0034804 0.0039096 0.0024506 8.43E-04 0.0054024 0.0019897 0.0024324 0.0031251 0.0029541

864.87604 0.0037468 0.0042072 0.0029839 0.00116 0.0059631 0.0023072 0.0027567 0.0035905 0.0033394

884.94403 0.0035363 0.0045765 0.0027927 0.0011169 0.005691 0.0024673 0.0033025 0.0037889 0.003409

900.00006 0.0114656 0.0117771 0.010296 0.0072081 0.0139256 0.0085532 0.0100642 0.010676 0.0104957

Figure 5-3 is the graphical representation of the spectral signatures of Water l class feature.
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Figure 5-3: Individual pixel spectra and the resultant mean signature for Water l class feature
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Table 5-2 shows the reflectance values for each o f  the selected pixels, P9 -  P16, and their

mean values representing the spectral response o f  Water_2 class feature. . Figure 5-4 is the

graphical representation o f  these spectral signatures.

Table 5-2: Water_2 individual pixel reflectance values

W a v e le n g th P 9 P 10 P l l P 12 P 13 P 14 P 15 P 16 Water_2

412.69101 0.0243727 0.0266212 0.0268793 0.0298173 0.0313346 0.0321359 0.0302128 0.0305414 0.0289894

442.55902 0.0240202 0.0273428 0.0265645 0.0296117 0.0321286 0.0311687 0.0302522 0.030369 0.0289322

489.88202 0.0265538 0.0288732 0.0283504 0.0314787 0.0338956 0.0343442 0.0330003 0.0332891 0.0312232

509.81903 0.0266608 0.0293837 0.0289332 0.0328336 0.0340626 0.0353743 0.0347019 0.0342653 0.0320269

559.69403 0.0267268 0.0289233 0.0291494 0.0326637 0.0346372 0.0361399 0.036856 0.035934 0.0326288

619.60101 0.0232687 0.0259238 0.0243093 0.0268864 0.0290271 0.0281522 0.0283777 0.0280572 0.0267503

664.57306 0.0236243 0.0261383 0.0244321 0.0267386 0.0290998 0.0281908 0.0278303 0.0281029 0.0267696

680.82104 0.0241981 0.0274235 0.0249535 0.0270515 0.0297058 0.0288658 0.0285973 0.0282144 0.0273762

708.32904 0.0243703 0.02728 0.0249482 0.0267082 0.0291695 0.0289158 0.028249 0.0291342 0.0273469

753.37103 0.0220989 0.0252065 0.0232547 0.0251448 0.0276041 0.0273315 0.0265532 0.0267768 0.0254963

761.50806 0.0205635 0.024231 0.0231232 0.0245203 0.0266459 0.0256253 0.0245948 0.0257685 0.0243841

778.40906 0.0224168 0.0251573 0.0233353 0.025145 0.0280015 0.0274706 0.0267794 0.0274191 0.0257156

864.87604 0.0231601 0.0260934 0.0238343 0.0257701 0.0285687 0.0278386 0.0272371 0.0280447 0.0263184

884.94403 0.023401 0.0258219 0.0240693 0.0255282 0.0286252 0.0282738 0.0278562 0.0280739 0.0264562

900.00006 0.033443 0.0358801 0.0328752 0.034818 0.037356 0.0372209 0.0365304 0.0373102 0.0356792

Figure 5-4: Individual pixel spectra and the resultant mean signature for Water_2 class feature
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Table 5-3 shows the reflectance values for each o f  the selected pixels, P17 -  P24, and their

mean values representing the spectral response o f  Water_3 class feature. Figure 5-5 is the

graphical representation o f  these spectral signatures.

Table 5-3: Water_3 individual pixel reflectance values

W a v e le n g th P 17 P 18 P 19 P 20 P 21 P 22 P 23 P 24 Water_3

412.69101 0.0300386 0.0312624 0.0315721 0.0300362 0.0298421 0.0287266 0.028151 0.0283671 0.0297495

442.55902 0.0357173 0.0379978 0.0384861 0.0370489 0.0362328 0.0332536 0.0328894 0.0325082 0.0355168

489.88202 0.0435126 0.0472364 0.047952 0.0463803 0.0446868 0.0406672 0.0420054 0.0403729 0.0441017

509.81903 0.0503115 0.0538788 0.0536548 0.0524878 0.0512895 0.047474 0.0481902 0.047108 0.0505493

559.69403 0.0893349 0.0896333 0.0895634 0.088659 0.087437 0.0872581 0.0877237 0.087807 0.0884271

619.60101 0.0702975 0.0754815 0.07615 0.0726866 0.0702949 0.0658416 0.0681607 0.0674581 0.0707964

664.57306 0.0642341 0.0700786 0.0703213 0.0674265 0.0645478 0.059499 0.0617974 0.0614302 0.0649169

680.82104 0.0575376 0.0637765 0.0639684 0.0607492 0.0579054 0.0523519 0.0548537 0.0539938 0.0581421

708.32904 0.1079724 0.1011698 0.0997985 0.1028432 0.1037564 0.1003607 0.0974122 0.1003639 0.1017096

753.37103 0.0565482 0.0492523 0.0479834 0.0510532 0.0523277 0.050427 0.0486443 0.0533943 0.0512038

761.50806 0.0497797 0.0437765 0.0436942 0.0450456 0.0477486 0.0453449 0.0428565 0.0478252 0.0457589

778.40906 0.0570671 0.0499543 0.0489064 0.0518126 0.0532388 0.0508252 0.0494702 0.0536565 0.0518664

864.87604 0.0318238 0.0265805 0.0259623 0.0280554 0.0289995 0.0280341 0.0271924 0.0307973 0.0284307

884.94403 0.0257824 0.0213901 0.0208523 0.0228359 0.023491 0.0230967 0.0224935 0.0257446 0.0232108

900.00006 0.0294838 0.0253881 0.0238331 0.0260374 0.026588 0.0260254 0.0256829 0.0305595 0.0266998
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Figure 5-5: Individual pixel spectra and the resultant mean signature for Water_3 class feature
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Table 5-4 shows the reflectance values for each o f  the selected pixels, P25 -  P32, and their

ixiean values representing the spectral response o f  Water_4 class feature. Figure 5-6 is the

graphical representation o f  these spectral signatures.

Table 5-4: Water_4 individual pixel reflectance values

W a v e le n g th P 25 P 26 P 27 P 28 P 29 P 30 P 31 P 32 Water_4

412.69101 0.074211 0.0744292 0.0757986 0.076804 0.0725293 0.0721061 0.0695293 0.072502 0.0734887

442.55902 0.0884856 0.0874122 0.0891227 0.0923776 0.0856668 0.0850469 0.0831646 0.0860611 0.0871672

489.88202 0.1031536 0.1009493 0.1040275 0.107682 0.1015629 0.0995267 0.0969754 0.1006506 0.101816

S09.81903 0.1099984 0.108487 0.1113109 0.1143201 0.1079683 0.1058544 0.1043681 0.1077389 0.1087557

559.69403 0.1424647 0.1410831 0.1429346 0.1451878 0.1400265 0.1374835 0.1385817 0.1396073 0.1409212

619.60101 0.1376035 0.1297226 0.1365103 0.145317 0.1326638 0.1315158 0.1319899 0.1356903 0.1351267

664.57306 0.1344816 0.1267449 0.1334981 0.1419264 0.1285543 0.1280461 0.1313267 0.1318098 0.1320485

680.82104 0.1294405 0.121694 0.1290906 0.1392061 0.1240235 0.1236933 0.1264054 0.1275167 0.1276338

708.32904 0.150462 0.1520966 0.1486496 0.146124 0.1485117 0.1486851 0.160218 0.1471298 0.1502346

753.37103 0.1004998 0.1041102 0.0996776 0.0973807 0.1010444 0.1017719 0.111315 0.0983738 0.1017717

761.50806 0.0866508 0.0902165 0.0885523 0.0860783 0.0887874 0.0891405 0.0972812 0.086621 0.089166

778.40906 0.1007301 0.1047428 0.1009508 0.0980732 0.1016844 0.1019873 0.1125882 0.0987516 0.1024385

864.87604 0.0806759 0.0830423 0.0805422 0.0791047 0.081217 0.0811328 0.0876322 0.0788719 0.0815274

884.94403 0.0762721 0.0777449 0.0755686 0.074841 0.0762881 0.0761093 0.0806349 0.0736224 0.0763852

900.00006 0.0910112 0.0921648 0.0896294 0.0886492 0.0911008 0.0907741 0.0951034 0.0874637 0.0907371

Figure 5-6: Individual pixel spectra and the resultant mean signature for Water_4 class feature
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Similarly, the vegetation spectra were extracted, and are presented below. Table 5-5 shows 

the reflectance values for each of the selected pixels, P33 -  P40, and their mean values 

representing the spectral response of vegetation class feature. Figure 5-7 shows the spectral 

signatures of each of these pixels and the mean spectra for vegetation.

Table 5-5: Vegetation individual pixel reflectance values

Wavelength P 33 P 34 P 35 P36 P 37 P 38 P 39 P 40 Vegetation

412.69101 -0.001959 -0.001945 -0.001392 -0.001347 -0.001595 -0.001767 -0.002162 -0.002302 -0.001809

442.55902 0.0021243 0.0017102 0.0013263 0.0012751 0.0010141 0.0014587 0.0014798 0.0014399 0.0014786

489.88202 0.0031707 0.003586 0.003591 0.0036546 0.0031446 0.0036964 0.0036329 0.0034209 0.0034871

509.81903 0.0080715 0.0079421 0.0072539 0.0074173 0.0074076 0.0078032 0.0079592 0.0080065 0.0077326

559.69403 0.0306687 0.0305968 0.031061 0.0304532 0.0306915 0.0307146 0.0308109 0.0308799 0.0307346

619.60101 0.0148636 0.0157221 0.0154964 0.0147963 0.0150411 0.0157639 0.0155378 0.0159636 0.0153981

664.57306 0.0082889 0.0089658 0.0086559 0.0081525 0.0083625 0.0088852 0.0088082 0.0090759 0.0086494

680.82104 0.0085411 0.008761 0.0090009 0.0082192 0.0082567 0.0088782 0.0087785 0.0090759 0.0086889

708.32904 0.0753904 0.0756991 0.0762407 0.0751903 0.0754019 0.0757727 0.0755418 0.0756348 0.075609

753.37103 0.3670259 0.3689279 0.3716893 0.3774043 0.370991 0.367342 0.3666497 0.3639067 0.3692421

761.50806 0.3327982 0.3361682 0.3349264 0.3444608 0.3423674 0.3316746 0.3350875 0.3261114 0.3354493

778.40906 0.4044282 0.407468 0.412389 0.4178461 0.4113943 0.4064367 0.4051486 0.4003839 0.4081868

864.87604 0.4583679 0.4611595 0.4660071 0.4708236 0.4641501 0.4591731 0.4574814 0.4498461 0.4608761

884.94403 0.4642478 0.4667602 0.4717672 0.4764155 0.469423 0.4647206 0.4636599 0.4560123 0.4666258

900.00006 0.5564654 0.5585285 0.5624438 0.5674535 0.5602568 0.5517254 0.5537859 0.5419457 0.5565756

reZ
X
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Figure 5-7: Individual pixel spectra and the resultant mean signature for Vegetation class feature
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Table 5-6: Image derived endmember spectral library consisting of vegetation and various water

classes

the reflectance values for all the four water classes together with that o f  vegetation at each o f

the fifteen MERIS bands were the combined to form an endmember spectral library shown in

Table 5-6- Figure 5-8 shows the final endmember spectral signatures.

W a v e le n g t h  (nm) Vegetation W ater_l Water_2 Water_3 Water_4

412.6910095 -0.00181 0.011824797 0.028989399 0.029749512 0.073488681

442.559021 0.001479 0.010264428 0.028932207 0.03551676 0.087167184

489.882019 0.003487 0.010600774 0.031223177 0.044101706 0.101815986

509.8190308 0.007733 0.010524974 0.032026923 0.050549326 0.108755748

559.6940308 0.030735 0.010344325 0.032628782 0.088427059 0.140921159

619.6010132 0.015398 0.005260422 0.026750303 0.070796357 0.13512666

664.5730591 0.008649 0.004819596 0.02676962 0.064916859 0.132048499

680.8210449 0.008689 0.005277234 0.027376227 0.058142072 0.127633767

708.3290405 0.075609 0.005012609 0.02734691 0.101709615 0.150234602

753.3710327 0.369242 0.002729237 0.02549631 0.051203812 0.101771683

761.5080566 0.335449 0.006519258 0.024384077 0.04575891 0.089166028

778.4090576 0.408187 0.002954085 0.025715631 0.0518664 0.10243854

864.8760376 0.460876 0.003339408 0.026318366 0.028430654 0.081527385

884.9440308 0.466626 0.003409013 0.026456181 0.023210826 0.076385161

900.000061 0.556576 0.01049573 0.035679223 0.026699776 0.090737084

Figure 5-8: The image derived endmember spectral library consisting o f  five spectral 

signatures, four for various water classes and one for vegetation class feature
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Spectral response o f water in the lake was found to be varying spatially, possibly according to 

the concentrations o f dissolved or suspended matter in it, indicating the extent o f nutrient 

enrichment in the lake. Purer water in the main lake displayed low reflectance values, while 

that near the shores and especially at the almost enclosed Winam Gulf had generally higher

reflectance values.

5 1.2 Linear spectral unmixing classification results

The resulting images were the abundance maps o f each o f the classes defined in the 

endmember file, an error map for each of the 15 MERIS bands, and a summary error band. 

The shapefile (shoreline) o f the region of interest (ROI) described in section 4.2.3 was 

overlaid on the images using ENVI 4.2 and a statistics file o f the pixel values from these 

images were generated. Table 5-7 shows a statistics file o f the vegetation abundance map for 

the 15 December 2010 image.

Table 5-7: A statistical summary o f  LSU classification results showing pixel values for 15-12-

2010 image

Pixel value
(Vegetation
abundance) Number of pixels Total Percentage

Accumulated
Percentage

0 410823 410823 62.2354 62.2354
0.003922 123420 534243 18.6969 80.9323
0.007843 53775 588018 8.1464 89.0787
0.011765 11645 599663 1.7641 90.8428
0.015686 5557 605220 0.8418 91.6846
0.019608 3549 608769 0.5376 92.2222
0.023529 2732 611501 0.4139 92.6361
0.027451 2207 613708 0.3343 92.9704
0.031373 1906 615614 0.2887 93.2592
0.035294 1680 617294 0.2545 93.5137
0.039216 1449 618743 0.2195 93.7332
0.043137 1317 620060 0.1995 93.9327
0.047059 1294 621354 0.196 94.1287
0.05098 1198 622552 0.1815 94.3102
0.054902 1103 623655 0.1671 94.4773
0.058824 1018 624673 0.1542 94.6315
0.062745 960 625633 0.1454 94.7769
0.066667 871 626504 0.1319 94.9089
0.070588 890 627394 0.1348 95.0437
0.07451 782 628176 0.1185 95.1622
0.078431 732 628908 0.1109 95.2731
0.082353 * 734 629642 0.1112 95.3843
0.086275 644 630286 0.0976 95.4818
0.090196 657 630943 0.0995 95.5813
0.094118 ,590 631533 0.0894 95.6707
0.098039 596 632129 0.0903 95.761
0.101961 542 632671 0.0821 95.8431
0005882 ‘ 506 633177 0.0767 95.9198
0.109804 524 633701 0.0794 95.9992
0 113725
O.i it k J t — 467 634168 0.0707 96.0699

440 634608 0.0667 96.1366
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0.121569 488 635096 0.0739 96.2105
0.12549 456 635552 0.0691 96.2796
0.129412 432 635984 0.0654 96.345
0.133333 401 636385 0.0607 96.4058
0.137255 374 636759 0.0567 96.4624
0.141176 419 637178 0.0635 96.5259
0.145098 432 637610 0.0654 96.5913
0.14902 393 638003 0.0595 96.6509
0.152941 330 638333 0.05 96.7009
0.156863 375 638708 0.0568 96.7577
0.160784 323 639031 0.0489 96.8066
0.164706 359 639390 0.0544 96.861
0.168627 297 639687 0.045 96.906
0.172549 318 640005 0.0482 96.9541
0.176471 289 640294 0.0438 96.9979
0.180392 265 640559 0.0401 97.0381
0.184314 282 640841 0.0427 97.0808
0.188235 258 641099 0.0391 97.1199
0.192157 231 641330 0.035 97.1549
0.196078 199 641529 0.0301 97.185
0.2 191 641720 0.0289 97.214
0.203922 185 641905 0.028 97.242
0.207843 178 642083 0.027 97.2689
0.211765 169 642252 0.0256 97.2945
0.215686 158 642410 0.0239 97.3185
0.219608 159 642569 0.0241 97.3426
0.223529 166 642735 0.0251 97.3677
0.227451 174 642909 0.0264 97.3941
0.231373 157 643066 0.0238 97.4179
0.235294 146 643212 0.0221 97.44
0.239216 151 643363 0.0229 97.4629
0.243137 134 643497 0.0203 97.4832
0.247059 132 643629 0.02 97.5031
0.25098 135 643764 0.0205 97.5236
0.254902 120 643884 0.0182 97.5418
0.258824 105 643989 0.0159 97.5577
0.262745 117 644106 0.0177 97.5754
0.266667 118 644224 0.0179 97.5933
0.270588 91 644315 0.0138 97.6071
0.27451 111 644426 0.0168 97.6239
0.278431 119 644545 0.018 97.6419
0.282353 115 644660 0.0174 97.6593
0.286275 104 644764 0.0158 97.6751
0.290196 122 644886 0.0185 97.6936
0.294118 113 644999 0.0171 97.7107
0.298039 109 645108 0.0165 97.7272
0.301961 105 645213 0.0159 97.7431
0.305882 107 645320 0.0162 97.7593
0.309804 108 645428 0.0164 97.7757
0.313725 101 645529 0.0153 97.791
0.317647 102 645631 0.0155 97.8064
0.321569 110 645741 0.0167 97.8231
0.32549 93 645834 0.0141 97.8372
0.329412 100 645934 0.0151 97.8523
0.333333 96 646030 0.0145 97.8669
0.337255 99 646129 0.015 97.8819
0.341176 93 646222 0.0141 97.896
0.345098 112 646334 0.017 97.9129
0.34902 128 646462 0.0194 97.9323
0.352941 97 646559 0.0147 97.947
0.356863 108 646667 0.0164 97.9634
0.360784 85

—T*------ 646752 0.0129 97.9762
0.364706 109 646861 0.0165 97.9928
0.368627 110 646971 0.0167 98.0094
0.372549 114 647085 0.0173 98.0267
0.376471 113 647198 0.0171 98.0438
0.380392 102 647300 0.0155 98.0593
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0.384314 94 647394 0.0142 98.0735
0.388235 116 647510 0.0176 98.0911
0.392157 123 647633 0.0186 98.1097
0.396078 101 647734 0.0153 98.125
0.4 112 647846 0.017 98.142
0.403922 107 647953 0.0162 98.1582
0.407843 112 648065 0.017 98.1752
0.411765 138 648203 0.0209 98.1961
0.415686 116 648319 0.0176 98.2136
0.419608 123 648442 0.0186 98.2323
0.423529 145 648587 0.022 98.2542
0.427451 122 648709 0.0185 98.2727
0.431373 121 648830 0.0183 98.291
0.435294 131 648961 0.0198 98.3109
0.439216 140 649101 0.0212 98.3321
0.443137 127 649228 0.0192 98.3513
0.447059 134 649362 0.0203 98.3716
0.45098 146 649508 0.0221 98.3938
0.454902 150 649658 0.0227 98.4165
0.458824 128 649786 0.0194 98.4359
0.462745 132 649918 0.02 98.4559
0.466667 149 650067 0.0226 98.4784
0.470588 145 650212 0.022 98.5004
0.47451 141 650353 0.0214 98.5218
0.478431 146 650499 0.0221 98.5439
0.482353 139 650638 0.0211 98.5649
0.486275 185 650823 0.028 98.593
0.490196 166 650989 0.0251 98.6181
0.494118 138 651127 0.0209 98.639
0.498039 142 651269 0.0215 98.6605
0.501961 164 651433 0.0248 98.6854
0.505882 182 651615 0.0276 98.7129
0.509804 161 651776 0.0244 98.7373
0.513725 177 651953 0.0268 98.7641
0.517647 153 652106 0.0232 98.7873
0.521569 166 652272 0.0251 98.8125
0.52549 168 652440 0.0255 98.8379
0.529412 156 652596 0.0236 98.8616
0.533333 150 652746 0.0227 98.8843
0.537255 154 652900 0.0233 98.9076
0.541176 186 653086 0.0282 98.9358
0.545098 184 653270 0.0279 98.9637
0.54902 151 653421 0.0229 98.9865
0.552941 172 653593 0.0261 99.0126
0.556863 161 653754 0.0244 99.037
0.560784 162 653916 0.0245 99.0615
0.564706 161 654077 0.0244 99.0859
0.568627 173 654250 0.0262 99.1121
0.572549 185 654435 0.028 99.1401
0.576471 180 654615 0.0273 99.1674
0.580392 135 654750 0.0205 99.1879
0.584314 149 654899 0.0226 99.2104
0.588235 141 655040 0.0214 99.2318
0.592157 134 655174 0.0203 99.2521
0.596078 154 655328 0.0233 99.2754
0.6 134 655462 0.0203 99.2957
0.603922 129 655591 0.0195 99.3153
0.607843 149 655740 0.0226 99.3378
0.611765 105 655845 0.0159 99.3537
0.615686 121 655966 0.0183 99.3721
0.619608 121 656087 0.0183 99.3904

_ 0.623529 142
--- 1*-----

656229 0.0215 99.4119
0.627451 125 656354 0.0189 99.4309
0.631373 103 656457 0.0156 99.4465
0.635294 122 656579 0.0185 99.4649
0.639216 114 656693 0.0173 99.4822
0643137 124 656817 0.0188 99.501
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0.647059 114 656931 0.0173 99.5183
0.65098 123 657054 0.0186 99.5369
0.654902 87 657141 0.0132 99.5501
0.658824 107 657248 0.0162 99.5663
0.662745 89 657337 0.0135 99.5798
0.666667 94 657431 0.0142 99.594
0.670588 110 657541 0.0167 99.6107

_ 0.67451 109 657650 0.0165 99.6272
0.678431 86 657736 0.013 99.6402
0.682353 107 657843 0.0162 99.6564
0.686275 82 657925 0.0124 99.6688
0.690196 91 658016 0.0138 99.6826
0.694118 73 658089 0.0111 99.6937
0.698039 70 658159 0.0106 99.7043
0.701961 75 658234 0.0114 99.7157
0.705882 77 658311 0.0117 99.7273
0.709804 78 658389 0.0118 99.7391
0.713725 86 658475 0.013 99.7522
0.717647 79 658554 0.012 99.7641
0.721569 86 658640 0.013 99.7772
0.72549 63 658703 0.0095 99.7867
0.729412 71 658774 0.0108 99.7975
0.733333 54 658828 0.0082 99.8056
0.737255 76 658904 0.0115 99.8172
0.741176 58 658962 0.0088 99.8259
0.745098 55 659017 0.0083 99.8343
0.74902 68 659085 0.0103 99.8446
0.752941 67 659152 0.0101 99.8547
0.756863 64 659216 0.0097 99.8644
0.760784 52 659268 0.0079 99.8723
0.764706 54 659322 0.0082 99.8805
0.768627 42 659364 0.0064 99.8868
0.772549 38 659402 0.0058 99.8926
0,776471 37 659439 0.0056 99.8982
0.780392 45 659484 0.0068 99.905
0.784314 35 659519 0.0053 99.9103
0.788235 31 659550 0.0047 99.915
0.792157 34 659584 0.0052 99.9202
0.796078 32 659616 0.0048 99.925
0.8 32 659648 0.0048 99.9299
0.803922 29 659677 0.0044 99.9343
0.807843 21 659698 0.0032 99.9374
0.811765 21 659719 0.0032 99.9406
0.815686 19 659738 0.0029 99.9435
,0.819608 20 659758 0.003 99.9465
0.823529 22 659780 0.0033 99.9499
0.827451 15 659795 0.0023 99.9521
0.831373 14 659809 0.0021 99.9543
0.835294 11 659820 0.0017 99.9559
0.839216 20 659840 0.003 99.9589
0.843137 14 659854 0.0021 99.9611
0.847059 10 659864 0.0015 99.9626
0.85098 8 659872 0.0012 99.9638
0.854902 10 659882 0.0015 99.9653
0.858824 5 659887 0.0008 99.9661
0.862745 6 659893 0.0009 99.967
0.866667 10 659903 0.0015 99.9685
0.870588 9 659912 0.0014 99.9699
0.87451 8 659920 0.0012 99.9711
0.878431 8 659928 0.0012 99.9723
0.882353 3 659931 0.0005 99.9727
0.886275 ---------------- 4 *’ 659935 0.0006 99.9733
0.890196 7 659942 0.0011 99.9744
0.894118 5 659947 0.0008 99.9752
0.898039 5 659952 0.0008 99.9759
0.901961 4 659956 0.0006 99.9765
0.905882 4 659960 0.0006 99.9771
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0.909804 12 659972 0.0018 99.9789
0.913725 4 659976 0.0006 99.9795
0.917647 3 659979 0.0005 99.98
0.921569 6 659985 0.0009 99.9809
0.92549 5 659990 0.0008 99.9817
0.929412 5 659995 0.0008 99.9824
0.933333 8 660003 0.0012 99.9836
0.937255 6 660009 0.0009 99.9845
0.941176 8 660017 0.0012 99.9858
0.945098 10 660027 0.0015 99.9873
0.94902 3 660030 0.0005 99.9877
0.952941 3 660033 0.0005 99.9882
0.956863 5 660038 0.0008 99.9889
0.960784 6 660044 0.0009 99.9899
0.964706 6 660050 0.0009 99.9908
0.968627 7 660057 0.0011 99.9918
0.972549 1 660058 0.0002 99.992
0.976471 3 660061 0.0005 99.9924
0.980392 2 660063 0.0003 99.9927
0.984314 6 660069 0.0009 99.9936
0.988235 2 660071 0.0003 99.9939
0.992157 5 660076 0.0008 99.9947
0.996078 2 660078 0.0003 99.995
1 33 660111 0.005 100

5.1.3 Classification accuracy

The accuracy of linear spectral unmixing classification was measured by the amount of mean 

RMSE of the image, obtained by considering the RMSE of each individual pixel, given by 

equation (4) (page 13), in the image. This is the residual error which occurs as a result of 

some inevitable inaccuracies in defining the endmember spectral library, so that some class 

features present in a pixel do not appropriately match any of the spectral signatures provided 

in the input endmember library. Using the RMSE values as an indicator o f the classification 

accuracies, the results displayed very high accuracy levels. Table 5-8 shows the statistics of 

RMSE pixel values for the 15-12-2010 image.

Table 5-8: A statistical summary o f  RMSE pixel values for 15-12-2010 image

Pixel Value (RMSE) Number of pixels Total Percentage
Accumulated
Percentage

0.000068 70650 70650 10.7027 10.7027
0.000589 245595 316245 37.2051 47.9079
0.001111 118885 435130 18.0098 65.9177
0.001632 55094 490224 8.3462 74.2639
0.002153 31631 521855 4.7918 79.0556
0.002674 21039 542894 3.1872 82.2428
0.003195 14196 557090 2.1505 84.3934
0.003716 10746 «' 567836 1.6279 86.0213
0.004237 8406 576242 1.2734 87.2947

_0.004759 6821 583063 1.0333 88.328
0.00528 5780 588843 0.8756 89.2036
0.005801 4555 593398 0.69 89.8937
0.006322 3989 597387 0.6043 90.498
0.006843 3414 600801 0.5172 91.0151
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0.007364 24864 625665 3.7666 94.7818
0.007886 2564 628229 0.3884 95.1702
0.008407 2233 630462 0.3383 95.5085
0.008928 1960 632422 0.2969 95.8054
0.009449 1763 634185 0.2671 96.0725
0.00997 1560 635745 0.2363 96.3088
0.010491 1389 637134 0.2104 96.5192
0.011012 1209 638343 0.1832 96.7024
0.011534 1142 639485 0.173 96.8754
0.012055 1056 640541 0.16 97.0353
0.012576 975 641516 0.1477 97.183
0.013097 899 642415 0.1362 97.3192
0.013618 824 643239 0.1248 97.4441
0.014139 789 644028 0.1195 97.5636
0.01466 756 644784 0.1145 97.6781
0.015182 682 645466 0.1033 97.7814
0.015703 626 646092 0.0948 97.8763
0.016224 494 646586 0.0748 97.9511
0.016745 537 647123 0.0813 98.0325
0.017266 493 647616 0.0747 98.1071
0.017787 478 648094 0.0724 98.1795
0.018308 451 648545 0.0683 98.2479
0.01883 438 648983 0.0664 98.3142
0.019351 403 649386 0.0611 98.3753
0.019872 364 649750 0.0551 98.4304
0.020393 373 650123 0.0565 98.4869
0.020914 342 650465 0.0518 98.5387
0.021435 302 650767 0.0457 98.5845
0.021957 317 651084 0.048 98.6325
0.022478 310 651394 0.047 98.6795
0.022999 256 651650 0.0388 98.7182
0.02352 265 651915 0.0401 98.7584
0.024041 258 652173 0.0391 98.7975
0.024562 244 652417 0.037 98.8344
0.025083 227 652644 0.0344 98.8688
0.025605 194 652838 0.0294 98.8982
0.026126 194 653032 0.0294 98.9276
0.026647 180 653212 0.0273 98.9549
0.027168 187 653399 0.0283 98.9832
0.027689 149 653548 0.0226 99.0058
0.02821 147 653695 0.0223 99.028
0.028731 142 653837 0.0215 99.0496
0.029253 127 653964 0.0192 99.0688
0.029774 149 654113 0.0226 99.0914
0.030295 140 654253 0.0212 99.1126
0.030816 133 654386 0.0201 99.1327
0.031337 145 654531 0.022 99.1547
0.031858 97 654628 0.0147 99.1694
0.03238 132 654760 0.02 99.1894
0.032901 109 654869 0.0165 99.2059
0.033422 114 654983 0.0173 99.2232
0.033943 114 655097 0.0173 99.2404
0.034464 120 655217 0.0182 99.2586
0.034985 112 655329 0.017 99.2756
0.035506 93 655422 0.0141 99.2897
0.036028 93 655515 0.0141 99.3038
0.036549 99 655614 0.015 99.3188
0.03707 88 655702 0.0133 99.3321
0.037591 92 655794 0.0139 99.346
0.038112 79 655873 0.012 99.358
0.038633 109 655982 0.0165 99.3745
0.039154 97

—r*-----
656079 0.0147 99.3892

0.039676 84 656163 0.0127 99.4019
0.040197 101 656264 0.0153 99.4172
0.040718 94 656358 0.0142 99.4315
0.041239 84 656442 0.0127 99.4442
0.04176 89 656531 0.0135 99.4577
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0.042281 92 656623 0.0139 99.4716
0.042802 85 656708 0.0129 99.4845
0.043324 85 656793 0.0129 99.4974
0.043845 76 656869 0.0115 99.5089
0.044366 93 656962 0.0141 99.523
0.044887 73 657035 0.0111 99.534
0.045408 79 657114 0.012 99.546
0.045929 83 657197 0.0126 99.5586
0.046451 68 657265 0.0103 99.5689
0.046972 74 657339 0.0112 99.5801
0.047493 75 657414 0.0114 99.5914
0.048014 79 657493 0.012 99.6034
0.048535 67 657560 0.0101 99.6135
0.049056 72 657632 0.0109 99.6245
0.049577 72 657704 0.0109 99.6354
0.050099 63 657767 0.0095 99.6449
0.05062 61 657828 0.0092 99.6541
0.051141 91 657919 0.0138 99.6679
0.051662 74 657993 0.0112 99.6791
0.052183 70 658063 0.0106 99.6897
0.052704 56 658119 0.0085 99.6982
0.053225 61 658180 0.0092 99.7075
0.053747 62 658242 0.0094 99.7169
0.054268 64 658306 0.0097 99.7266
0.054789 68 658374 0.0103 99.7369
0.05531 69 658443 0.0105 99.7473
0.055831 57 658500 0.0086 99.756
0.056352 63 658563 0.0095 99.7655
0.056873 79 658642 0.012 99.7775
0.057395 52 658694 0.0079 99.7853
0.057916 57 658751 0.0086 99.794
0.058437 69 658820 0.0105 99.8044
0.058958 74 658894 0.0112 99.8156
0.059479 62 658956 0.0094 99.825
0.06 60 659016 0.0091 99.8341
0.060522 45 659061 0.0068 99.8409
0.061043 55 659116 0.0083 99.8493
0.061564 68 659184 0.0103 99.8596
0.062085 48 659232 0.0073 99.8668
0.062606 52 659284 0.0079 99.8747
0.063127 33 659317 0.005 99.8797
0.063648 40 659357 0.0061 99.8858
0.06417 36 659393 0.0055 99.8912
0.064691 43 659436 0.0065 99.8977
0.065212 47 659483 0.0071 99.9049
0.065733 33 659516 0.005 99.9099
0.066254 39 659555 0.0059 99.9158
0.066775 35 659590 0.0053 99.9211
0.067296 31 659621 0.0047 99.9258
0.067818 26 659647 0.0039 99.9297
0.068339 17 659664 0.0026 99.9323
0.06886 16 659680 0.0024 99.9347
0.069381 28 659708 0.0042 99.9389
0.069902 12 659720 0.0018 99.9408
0.070423 21 659741 0.0032 99.9439
0.070945 18 659759 0.0027 99.9467
0.071466 23 659782 0.0035 99.9502
0.071987 20 . 659802 0.003 99.9532
0.072508 19 659821 0.0029 99.9561
0.073029 12 659833 0.0018 99.9579
0.07355 10 659843 0.0015 99.9594
0.074071 12 659855 0.0018 99.9612
0.074593 15 659870 0.0023 99.9635
0.075114 10 659880 0.0015 99.965
0.075635 14 659894 0.0021 99.9671
0.076156 12 659906 0.0018 99.9689
0.076677 17 659923 0.0026 99.9715
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0.077198 7 659930 0.0011 99.9726
0.077719 10 659940 0.0015 99.9741
0.078241 11 659951 0.0017 99.9758
0.078762 11 659962 0.0017 99.9774
0.079283 10 659972 0.0015 99.9789
0.079804 8 659980 0.0012 99.9802
0.080325 3 659983 0.0005 99.9806
0.080846 3 659986 0.0005 99.9811
0.081367 6 659992 0.0009 99.982
0.081889 9 660001 0.0014 99.9833
0.08241 4 660005 0.0006 99.9839
0.082931 1 660006 0.0002 99.9841
0.083452 6 660012 0.0009 99.985
0.083973 6 660018 0.0009 99.9859
0.084494 4 660022 0.0006 99.9865
0.085016 4 660026 0.0006 99.9871
0.085537 3 660029 0.0005 99.9876
0.086058 3 660032 0.0005 99.988
0.086579 3 660035 0.0005 99.9885
0.0871 3 660038 0.0005 99.9889
0.087621 3 660041 0.0005 99.9894
0.088142 3 660044 0.0005 99.9899
0.088664 4 660048 0.0006 99.9905
0.089185 7 660055 0.0011 99.9915
0.089706 1 660056 0.0002 99.9917
0.090227 3 660059 0.0005 99.9921
0.090748 1 660060 0.0002 99.9923
0.091269 0 660060 0 99.9923
0.09179 4 660064 0.0006 99.9929
0.092312 5 660069 0.0008 99.9936
0.092833 1 660070 0.0002 99.9938
0.093354 3 660073 0.0005 99.9942
0.093875 1 660074 0.0002 99.9944
0.094396 0 660074 0 99.9944
0.094917 1 660075 0.0002 99.9945
0.095438 3 660078 0.0005 99.995
0.09596 0 660078 0 99.995
0.096481 1 660079 0.0002 99.9952
0.097002 0 660079 0 99.9952
0.097523 0 660079 0 99.9952
0.098044 1 660080 0.0002 99.9953
0.098565 2 660082 0.0003 99.9956
0.099087 1 660083 0.0002 99.9958
0.099608 0 660083 0 99.9958
0.100129 2 660085 0.0003 99.9961
0.10065 2 660087 0.0003 99.9964
0.101171 1 660088 0.0002 99.9965
0.101692 0 660088 0 99.9965
0.102213 1 660089 0.0002 99.9967
0.102735 1 660090 0.0002 99.9968
0.103256 2 660092 0.0003 99.9971
0.103777 1 660093 0.0002 99.9973
0.104298 0 660093 0 99.9973
0.104819 2 660095 0.0003 99.9976
0.10534 0 660095 0 99.9976
0.105861 1 660096 0.0002 99.9977
0.106383 2 660098 0.0003 99.998
0.106904 1 660099 0.0002 99.9982
0.107425 1 660100 0.0002 99.9983
0.107946 0 660100 0 99.9983
0.108467 1 660101 0.0002 99.9985
0.108988 0 — C------ 660101 0 99.9985
0.10951 0 660101 0 99.9985
0.110031 0 660101 0 99.9985
0.110552 0 660101 0 99.9985
0.111073 1 660102 0.0002 99.9986
0.111594 1 660103 0.0002 99.9988
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0.112115 0 660103 0 99.9988
0.112636 0 660103 0 99.9988
0.113158 0 660103 0 99.9988
0.113679 0 660103 0 99.9988
0.1142 0 660103 0 99.9988
0.114721 0 660103 0 99.9988
0.115242 0 660103 0 99.9988
0.115763 2 660105 0.0003 99.9991
0.116284 1 660106 0.0002 99.9992
0.116806 1 660107 0.0002 99.9994
0.117327 1 660108 0.0002 99.9995
0.117848 0 660108 0 99.9995

"0118369 0 660108 0 99.9995
0.11889 0 660108 0 99.9995
0.119411 1 660109 0.0002 99.9997
0.119932 0 660109 0 99.9997
0.120454 0 660109 0 99.9997
0.120975 0 660109 0 99.9997
0.121496 0 660109 0 99.9997
0.122017 0 660109 0 99.9997
0.122538 0 660109 0 99.9997
0.123059 0 660109 0 99.9997
0.123581 0 660109 0 99.9997
0.124102 0 660109 0 99.9997
0.124623 0 660109 0 99.9997
0.125144 0 660109 0 99.9997
0.125665 0 660109 0 99.9997
0.126186 0 660109 0 99.9997
0.126707 0 660109 0 99.9997
0.127229 0 660109 0 99.9997
0.12775 1 660110 0.0002 99.9998
0.128271 0 660110 0 99.9998
0.128792 0 660110 0 99.9998
0.129313 0 660110 0 99.9998
0.129834 0 660110 0 99.9998
0.130355 0 660110 0 99.9998
0.130877 0 660110 0 99.9998
0.131398 0 660110 0 99.9998
0.131919 0 660110 0 99.9998
0.13244 0 660110 0 99.9998
0.132961 1 660111 0.0002 100

From table 5-8, it is noticed that more than 96.3% of the pixels were classified with less than 

0.01 RMSE, or more than 99% accuracy. Figure 5-9 shows a histogram of the RMSE values 

of one of the images.
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Figure 5-9: A histogram o f  RMSE values for one o f the images. Majority o f  the pixels have 

RMSE values less than 0.02

Mean RMSE for an image was then computed by taking into account the number o f pixels for 

each RMSE and the total number o f pixels in the image. The mean RMSE value for this 

image is 0.002709 giving a percentage error of 0.27%, and thus the overall classification 

accuracy for the image is 99.73%. Table 5-9 shows the mean RMSE values and the 

corresponding percentage classification accuracies for various images.

Table 5-9: Classification accuracy assessment

Date Mean RMSE Percentage Error Percentage Accuracy

26/12/2003 0.004331 0.4331 99.5669

21/02/2005 0.005201 0.5201 99.4799

17/07/2005 0.007342 0.7342 99.2658

02/01/2006 0.002851 0.2851 99.7149

06/02/2006 0.002936 0.2936 99.7064

16/08/2006 0.004417 0.4417 99.5583

12/10/2006 0.012835 1.2835 98.7165

20/02/2007 0.005826 0.5826 99.4174

27/09/2008 0.005384 0.5384 99.4616

14/02/2009 0.002114 0.2114 99.7886

21/03/2009 0.004325 0.4325 99.5675

12/06/2009 0.008222 0.3222 99.6778

02/08/2009 0.007701 0.7701 99.2299

28/09/2009 0.00418 0.418 99.582

12/02/2010 0.004333 0.4333 99.5667

03/08/2010 0.005996 0.5996 99.4004
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prom the Table 5-9, it is observed that the spectral unmixing technique produced good 

^laggification results with very high classification accuracy, based on the RMSE accuracy 

^sessment. Most pixels were classified with more than 99% accuracy, as shown in the 

j^FSE distribution graph. These images produced a mean classification accuracy of 99.48%, 

vvhich is an indication o f a sufficiently representative endmember file, which adequately 

describes most o f the class features present in the image. Figure 5-10 is a graphical 

representation of the accuracy levels for various images over the study period.
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Figure 5-10: A bar graph showing percentage classification accuracy for various images. All 

images were classified with more than 98% accuracy

5.2 Mapping and Monitoring

5*2.1 Monitoring spatial distribution of the aquatic plants

When classification was complete, vegetation cover maps were then generated using ArcGIS 

^  software. The images used in this study were received when they were already geocoded, 

and were easily imported to ArcGIS 9.3 software for mapping. The images were projected in 

a UTM Zone 36S coordinate system and WGS- 84 Datum, and resampled using the nearest 

neighbour technique, which preserves the spectral integrity o f the image pixel. Vegetation 

maPs were then generated. Figure 5-11 is a map showing the spatial distribution of aquatic
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plants in the lake on December 15th, 2010. It is observed from the map that there is a massive 

infestation o f  the aquatic plants in the Winam Gulf, the almost enclosed section in the 

Kenyan side o f  the lake.
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Figure 5-11: Map showing the spatial distribution o f aquatic vegetation in Lake Victoria on 15-12- 

2010. The map displays the fractional abundance o f vegetation per pixel, where minimum means the 

pixels displays open water and maximum means pixel is fully covered by vegetation. Inset (enclosed 

in red) is the Winam Gulf section of the lake

5.2.2 Monitoring temporal variation of the aquatic plants

5.2.2.1Surface area estimation
Spatial extent of a particular image constituent is computed by determining the fractional 

abundance of that feature in all the pixels, as well as the mean pixel area. In BEAM, the mean 

pixel area is obtained by considering the spatial resolution of the image and putting into
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si deration the bow-tie effect due to the earth’s curvature. For MERIS Full Resolution 
coflS1

* cnatial resolution varies in the across track direction, between 0.26 km at nadir and 0.39 
data'

t swath extremities. Along-track sampling is close to 0.29 km. With the earth’s radius of 

^370 997 mean pixel area is estimated at 0.074 km2 (ESA, 2010).

po monitor the spatial distribution o f the aquatic plants in the lake, the area covered by the 

[aquatic plants was computed and the cover maps generated. The total surface area of 

vegetation in the lake (Av) was computed using an algorithm which takes into account the 

abundance of vegetation in each pixel (a,) and the mean pixel surface area (Ap);

Av = £ a i -n -A p O)
/=0

where n is the number o f pixels with abundance value a, and values 0 and 1 are the minimum 

and maximum abundance values respectively. Table 5-10 gives a summary of the vegetation 

surface areas for various images o f the entire lake in the period 2003 -  2010.

Table 5-10: Results of aquatic vegetation area estimation in Lake Victoria

Date Vegetated area (km2) Vegetated area (ha)

26/12/2003
817.94 81794.01

21/02/2005
628.88 62888.43

17/07/2005
738.60 73859.81

02/01/2006
670.28 67027.71

06/02/2006
524.40 52440.13

16/08/2006
615.99 61598.77

20/02/2007
746.16 74616.38

27/09/2008
1070.25 107025.32

14/02/2009
1004.56 100456.41

21/03/2009
885.82 88581.72

12/06/2009
663.43 66342.79

- , 642.17 64217.26
02/08/2009 s

770.76 77075.54
28/09/2009 4'

12/02/2010
655.61 ‘ 65560.99

_03/08/2010
679.36 67936.34



Victoria covers a very w ide area spatially (about 68 800 km 2). M any im ages were 

therefore rejected for failure to cover the entire lake. Further, the area is prone to clouds, so 

that many m ore im ages were rejected for severe cloud cover, beyond the preset percentage 

cloud cover threshold o f  5%. This greatly reduced the number o f  available data for use in the 

study* so that the tim e series trends o f  the vegetation coverage in the lake had several no-data 

gaps. W hen a sm aller region, the W inam  G u lf w as considered, the number o f  usable data 

increased sign ificantly  from  15 to 93 im ages. Table 5-11 is a sum mary o f  the vegetation  

surface area estim ations o f  the W inam  G u lf for various acquisition dates w ithin the period  

2003 -  20 1 0.

Table 5-11: Results o f  aquatic vegetation area estimation in Winam Gulf

D a te V e g e t a t e d  a r e a  ( k m 2) V e g e t a t e d  a r e a  (h a )

11 /05 /2 0 0 3 33.82171 3382.171

17 /05 /2 0 0 3 12.56434 1256.434

0 2 /0 6 /2 0 0 3 17.46435 1746.435

3 0 /0 8 /2 0 0 3 15.98224 1598.224

16 /12 /2 0 0 3 28.41325 2841.325

2 6 /1 2 /2 0 0 3 20.94951 2094.951

1 5 /02 /2 004 21.83479 2183.479

2 0 /0 5 /2 0 0 4 42.55147 4255.147

0 1 /0 7 /2 0 0 4 31.73996 3173.996

3 0 /0 8 /2 0 0 4 15.19065 1519.065

18 /09 /2 0 0 4 45.63649 4563.649

2 6 /1 2 /2 0 0 4 29.86872 2986.872

0 5 /0 2 /2 0 0 5 13.04411 1304.411

2 1 /0 2 /2 0 0 5 7.730967 773.0967

19 /04 /2 0 0 5 63.28403 6328.403

12 /06 /2 0 0 5 33.30988 3330.988

12 /08 /2 0 0 5 16.41349 1641.349

0 3 /0 9 /2 0 0 5 28.67832 2867.832

2 9 /0 9 /2 0 0 5 43 .8736 4387.36

0 8 /1 0 /2 0 0 5 86.36262 8636.262

0 3 /1 1 /2 0 0 5 45.82429 4582.429

1 4 /12 /2 005 11.63109 1163.109

3 0 /1 2 /2 0 0 5 15.52643 1552.643

0 2 /0 1 /2 0 0 6

r

60.83674 6083.674

2 4 /0 1 /2 0 0 6 77.95841 7795.841

0 6 /0 2 /2 0 0 6 12.91612 1291.612

2 5 /0 2 /2 0 0 6 25.7966 2579.66
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2 9 /0 3 /2 0 0 6 22.52676 2252.676

1 7 /0 4 /2 0 0 6 26.35305 2635.305

3 0 /0 4 /2 0 0 6 38.69969 3869.969

0 6 /0 5 /2 0 0 6 43 .43046 4343.046

1 5 /0 7 /2 0 0 6 76.40806 7640.806

1 6 /0 8 /2 0 0 6 20.21652 2021.652

0 1 /0 9 /2 0 0 6 43 .10439 4310.439

0 3 /1 0 /2 0 0 6 49 .83714 4983.714

1 3 /1 1 /2 0 0 6 45 .86347 4586.347

1 2 /1 2 /2 0 0 6 60.2305 6023.05

0 6 /0 1 /2 0 0 7 52.63732 5263.732

2 0 /0 2 /2 0 0 7 58 .64196 5864.196

0 8 /0 3 /2 0 0 7 119.4526 11945.26

2 0 /0 5 /2 0 0 7 114.6957 11469.57

0 2 /0 6 /2 0 0 7 200.0298 20002.98

2 2 /0 7 /2 0 0 7 86 .81768 8681.768

0 7 /0 8 /2 0 0 7 74.02762 7402.762

2 3 /0 8 /2 0 0 7 90.143 9014.3

0 8 /0 9 /2 0 0 7 71.85243 7185.243

2 1 /0 9 /2 0 0 7 69.50482 6950.482
/

2 9 /1 0 /2 0 0 7 62.75957 6275.957

14 /11 /2 0 0 7 62.59728 6259.728

3 0 /1 1 /2 0 0 7 58.49004 5849.004

0 6 /1 2 /2 0 0 7 57.05684 5705.684

2 9 /1 2 /2 0 0 7 91.9234 9192.34

0 4 /0 1 /2 0 0 8 41 .76006 4176.006

0 2 /0 2 /2 0 0 8 68.48107 6848.107

2 4 /0 2 /2 0 0 8 32.4542 3245.42

1 1 /0 3 /2 0 0 8 42 .82396 4282.396

2 7 /0 4 /2 0 0 8 39.18437 3918.437

1 6 /0 5 /2 0 0 8 52.0122 5201.22

0 1 /0 6 /2 0 0 8 40 .66646 4066.646

2 7 /0 6 /2 0 0 8 22.31888 2231.888

0 6 /0 7 /2 0 0 8 40 .38542 4038.542

1 0 /0 8 /2 0 0 8 * 31.26372 3126.372

1 0 /1 0 /2 0 0 8 33 .62286 3362.286

2 6 /1 0 /2 0 0 8 < 37.31923 3731.923

1 7 /1 1 /2 0 0 8 58 .89212 5889.212

0 6 /1 2 /2 0 0 8 32.01996 3201.996

2 2 /1 2 /2 0 0 8 32.27649 3227.649
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2 7 /0 2 /2 0 0 9 27.8922 2789.22

2 1 /0 3 /2 0 0 9 57.7322 5773.22

0 3 /0 4 /2 0 0 9 41.911 4191.1

0 5 /0 5 /2 0 0 9 69.97878 6997.878

2 4 /0 5 /2 0 0 9 44.77441 4477.441

0 2 /0 6 /2 0 0 9 70.89753 7089.753

1 2 /0 6 /2 0 0 9 54.81892 5481.892

1 8 /0 6 /2 0 0 9 45.65801 4565.801

17 /07 /2 0 0 9 22.15358 2215.358

2 7 /0 8 /2 0 0 9 41.4565 4145.65

0 9 /0 9 /2 0 0 9 21.10147 2110.147

2 8 /0 9 /2 0 0 9 37.03736 3703.736

1 5 /1 1 /2 0 0 9 31.2164 3121.64

2 0 /1 2 /2 0 0 9 43.02216 4302.216

3 0 /0 1 /2 0 1 0 28.33534 2833.534

1 2 /0 2 /2 0 1 0 31.2164 3121.64

2 0 /0 4 /2 0 1 0 47.01235 4701.235

2 1 /0 5 /2 0 1 0 81.60867 8160.867

3 1 /0 5 /2 0 1 0 56.22057 5622.057

1 0 /0 6 /2 0 1 0 79.62372 7962.372

2 7 /0 7 /2 0 1 0 57.00062 5700.062

0 3 /0 8 /2 0 1 0 36.2957 3629.57

2 3 /0 9 /2 0 1 0 56.09027 5609.027

1 5 /1 1 /2 0 1 0 99.79671 9979.671

0 4 /1 2 /2 0 1 0 95.78852 9578.852

1 5 /1 2 /2 0 1 0 75.52587 7552.587

5.2.2.2 Time series variation (Vegetation phenology)
Temporal variation in the abundance o f the aquatic plants was monitored by graphically 

analyzing the variation in its spatial extent (surface area coverage) with time, using images 

covering a wide temporal extent. Figure 5-12 shows the time series variation o f vegetation 

abundance in the lake over the period 2003 -  2010.
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Figure 5-12: Time series variation o f  vegetation abundance (surface area) in Lake Victoria in the 

period 2003 -  2010

Figure 5-13 presents the time series variation of aquatic plants in the Winam Gulf over the 

same study period. See Table 5-11 for the source data.

Figure 5-13: Time series variation o f  vegetation abundance in the Winam G ulf section o f  Lake 

Victoria in the period 2003 -  2010

f 2
These results show that vegetation cover in the Winam Gulf which was kept below 100 km 

during the years 2003 to 2006 increased to a peak o f about 200 km2 in 2007, before 

decreasing again to below 100 km2 during the years 2008 to 2010. This trend is similar to that 

of Laneve et al. (2010), shown in Figure 5-14, which were obtained using Landsat data.
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Figure 5-14: Histogram of floating and sparse/submerged vegetation computed from Landsat 

ETM+ temporal series classification o f the Winam Gulf. Source: Laneve et al. (2010)

5.3 Seeking correlations between vegetation abundance and 
water quality parameters and rainfall

5.3.1 Water quality analysis

Vegetation growth is sometimes very rapid, so that the frequency of image data required to 

monitor them should be at least bi-weekly (Laneve et al. 2010). Establishing a relationship 

between the variations of vegetation abundance and the water quality parameters; Chl-a and 

TSM as well as meteorological information require more frequent data with a short revisit 

time. Such data is very rarely available due to the severity of clouds cover over the region. 

The mean values of concentrations of Chl-a and TSM over the whole lake were not very 

useful in deriving any correlation with the aquatic plants proliferation because much of the 

vegetation is along the shore and in the shallow waters, especially the Winam Gulf, and little 

is found in the deeper waters at the main lake so that the mean values would water down the 

information. Williams et al. (2007) commented that Lake Victoria is the second largest lake 

in the world and to condense *the system into a single graph is an over simplification of the 

spatial complexity. For this reason therefore, only the Winam Gulf was considered in seeking 

correlations between vegetationVariation and the water quality parameters.
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Some water quality parameters have optical properties, which the satellite sensor can detect. 

MER1S Eutrophic Lakes Processor 1.4.1 (Doerffer and Schiller, 2008 (b)) in BEAM 4.8 was 

used to retrieve the abundance values for some selected water quality parameters; the 

concentrations of Chl-a and TSM. Koponen et al. (2008) validated the processor using in situ 

measurements for some eutrophic lakes in Europe and Africa which include Lake Victoria. 

The validation results of Lake Victoria showed a good performance of the processor with 

correlation between satellite derived data and in situ measurements showing coefficient of 

determinations of R2 = 0.77 and R2 = 0.92 for TSM and Chl-a respectively. Using this 

processor, the pixel concentrations of these parameters were retrieved and their distribution 

maps were then generated using ArcGIS 9.3.
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Figure 5-15: Map showing the spatial distribution of Chl-a in Lake Victoria on 15-12-2010. The map 

displays pixel concentration of, Chl-a ranging from zero to 120 mg/m3 In this image, higher 

concentration of Chl-a is observed along the shores especially on the Ugandan section of the lake 

Inset (enclosed in red) is the Winar^ Gulf section o f the lake
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Figure 5-15 shows the distribution of the concentration of Chl-a in the lake on December 

15th, 2010. From this figure, high concentrations of Chl-a is observed along the shores of the 

lake, which generally decreases towards the central part of the lake. Figure 5-16 shows the 

distribution of the concentration of TSM in the lake on December 15th, 2010. This figure 

shows a very high concentration of TSM in the Winam Gulf and in some other bays. The 

central part of the lake is however free from these sediments.
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Figure 5-16: Map showing the spatial distribution o f TSM in Lake Victoria on 15-12-2010. The map 

displays pixel concentration of TSM ranging from zero to 18 g/m \ In this image, higher concentration 

o f TSM is observed on the shallow sections o f the lake especially the Winam Gulf and some sections 

on the Tanzanian section of lake. Inset (enclosed in red) is the Winam Gulf section o f the lake

The temporal variation of these water quality parameters were compared with those of the 

aquatic plants, with a view of determining if any correlation exists. The mean values of 

concentrations of Chl-a and TSM over some selected open water regions of Winam Gulf
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were computed for every image. Figure 5-17 shows the time series variation of vegetation 

abundance with these water quality values.

Figure 5-17: A line graph showing the time series variation o f vegetation abundance and 

concentrations o f TSM and Chl-a water quality parameters in the Winam Gulf section o f Lake 

Victoria. A peak vegetation abundance o f about 200 km2 is observed at around June 2007

To further seek the relationship between the vegetation variation and the variation of the 

water quality parameters, regression analysis was conducted. Regression results show that for 

no time delay, vegetation abundance has no significant relationship with Chl-a over the 

period 2003 to 2010, with correlation coefficient of R = 0.34. Figure 5-18 shows the 

relationship between vegetation abundance and Chl-a values for no time delay. This is
f

because vegetation would be expected to take some time to respond to the changes in the 

quality of water.
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N o t im e  de lay

Figure 5-18: Scatter plot showing the variation o f vegetation with Chl-a in Winam Gulf

To investigate the response o f vegetation to Chl-a over time, correlation coefficients were 

computed for one, two, three and four months delay periods and the results are presented in 

Figure 5-19. The number of datasets in the regression graphs o f Figure 5-19 are less than in 

Figure 5-18 since only a few images fell within the range of the specified time delay. These 

results show that vegetation has the highest response to changes in conditions o f Chl-a after 

three months with R = 0.57.

Figure 5-19: Variation o f vegetation with Chl-a in Winam Gulf for various delay periods
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Similarly, regression results showed that for no time delay, vegetation abundance has no

significant relationship with TSM, with correlation coefficient o f  R =  0.08 as shown in Figure

5-20.
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Figure 5-20: Scatter plot showing the variation o f  vegetation with TSM in Winam Gulf

Response of vegetation to TSM over time was investigated and the regression results are 

presented in Figure 5-21. These results show that vegetation has the highest response to 

changes in conditions o f TSM after two months with R = 0.46.
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Figure 5-21: Variation of vegetation with TSM in Winam Gulf for various delay periods
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With the view of determining the dependence of these water quality parameters on one 

another, regression analysis was carried out for Chl-a and TSM. Variation o f Chl-a with TSM 

(Figure 5-22) was found to be linear, with correlation coefficient of R = -0.77 for no time 

delay.

Figure 5-22: Scatter plot showing the relationship between Chl-a and TSM in Winam Gulf at
1

no time delay

After a delay period o f a few months, the dependence of Chl-a on TSM dropped gradually to 

R = -0.28 after four months. The linearity, however, was conserved. Figure 5-23 shows the 

regression results for various time delays.
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Figure 5-23: Variation o f Chl-a with TSM in Winam Gulf for various delay periods

57



Regression results showed that for no delay period there is a fairly strong linear and inverse 

relationship between TSM and Chl-a, with R = -0.77. The relationship, however, gradually 

dropped in the subsequent delay periods to R = -0.28 by the fourth month. Table 5-13 is a 

summary o f these regression results.

Table 5-12: A summary o f  regression results for Chl-a and TSM for various time delays

Delay period 

(months)

Correlation Coefficient

(R)

Coefficient o f  Determination 

(R2)

0 -0.77439 0.599686

1 -0.66927 0.447925

2 0.499259 0.249259

3 -0.3944 0.155549

4 -0.28071 0.078797

The possible explanation to this is that while rain water decreases the concentrations of 

already existing Chl-a in the lake by diluting it, run-off water sweeps sediments and nutrients 

into the lake, thus increasing that o f TSM.
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5.3.2 Rainfall

The presence of TSM in the lake is most likely to be a result of run-off water sweeping 

sediments into the lake during heavy rainy seasons. The role of rain in the proliferation of 

aquatic vegetation was investigated. Rainfall data for Kisumu rain station was obtained from 

the Kenya Meteorological Department (KMD) for the period 2003 to 2009. Figure 5-24 

shows the variation of the vegetation with weekly average rainfall over the period.
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Figure 5-24: A line graph showing the time series variation o f vegetation abundance with rainfall in 

the Winam Gulf section o f Lake Victoria. Kisumu rainfall data source: Kenya Meteorological 

Department (KMD)

Regression analysis was conducted to further seek the relationship between vegetation 

variations with that of rainfall, and the results show that at no time delay, there is no 

significant correlation between vegetation and rainfall, with R = 0.08 as shown in Figure 5- 

25. This is as expected, because if vegetation proliferation is influenced by the rainfall pattern 

in its drainage basin, then the response would take place after some time, possibly a few 

months.
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N o t im e  de lay

Figure 5-25: Scatter plot showing the relationship between vegetation and rainfall in Winam 

Gulf

Response o f vegetation to rainfall over time was also investigated and the regression results 

are presented in Figure 5-26. These results show that vegetation has the highest response to 

changes in conditions of rainfall after three months with R = 0.67.

Figure 5-26: Variation of vegetation with rainfall in Winam Gulf for various delay periods
i
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5.4 Vegetation abundance prediction models

The regression results presented in sections 5.3.1 and 5.3.2 revealed that for no time delay, 

there is generally no significant relationship between vegetation abundance and water quality 

parameters as well as rainfall with R = 0.08, R = 0.34 and R = -0.08 for TSM, Chl-a and 

rainfall respectively. This is because there is some time delay, in the order o f months, 

between the occurrence o f a significant change in these parameters and the response o f the 

aquatic vegetation to the change. The low values o f R could be attributed to the extensive 

surface area o f the lake and the wide temporal extent o f the study period, in agreement with 

Zhang et al. (2011). A summary of the regression results is presented in Table 5-12.

Table 5-13: A summary o f  regression results for the variation o f  vegetation abundance with TSM, 

Chl-a and rainfall for various time delays * *

Coefficient o f  Determination (R2) Correlation Coefficient (R)
Delay period -------------------------------------------------------------------------------------------------------------------

(months) TSM Chl-a Rainfall TSM Chl-a Rainfall

0 0.0067 0.1158 0.006 0.0819 0.3403 -0.0775

1 0.1568 0.148 0.2095 0.3960 0.3847 0.4577

2 0.209 0.2247 0.3773 0.4572 0.4740 0.6142

3 0.1334 0.3231 0.4437 0.3652 0.5684 0.6661

0.1222 0.2611 0.162 0.3496 0.5110 0.4025

These results show that response to TSM is highest after two months delay with R = 0.46, 

while response Chl-a is highest after three months with R = 0.57. Response to rainfall is 

highest after three months with R = 0.67. Based on these optimum response periods and for 

any given day, n, the following regression equations were derived to predict the vegetation

abundance An+2 (in km2) two months after the specified date or An+3 (in km2) three months
*

after the specified date;
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An*2 = 9.7 -TSM n- 96.6 

^  = 20.6-CW,-120.3 

A +3 = 7.7 • Rairin + 36.2

(9)

(10)

(8)

where TSM(n) is the mean concentration o f TSM (measured in g m'3), Chl(„) is the mean 

concentration o f Chl-a (measured in mg m'3) while Rairi(n) is the average weekly rainfall 

(measured in mm), all at the specified date, n.

The relationships between variation o f aquatic vegetation with those of water quality 

parameters and rainfall were found to be generally weak. It is possible that vegetation 

growing in the Winam Gulf is carried away by winds and currents and exit through the 

narrow opening into the main lake. This effect lowers the coefficient values and reduces the 

ability to predict future occurrence o f vegetation growth based on the information about the 

condition of the lake.
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6 CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

An endmember spectral library o f the predominant class features in the lake was developed 

by deriving their spectral response characteristics from a multispectral satellite imagery. It 

consists o f five individual endmember files, one for vegetation and four for various water 

classes. The individual endmember files were computed as the mean o f the spectral 

signatures o f eight discrete pixels covering that endmember feature, each identified at one 

pixel accuracy. The predominant class features were identified following the results of 

unsupervised classification with K-Means clustering.

Spectral unmixing as a supervised classification technique was found to be very suitable for 

application with multispectral data with relatively low spatial resolution. This is because of 

the ability of the algorithm to decompose the large mixed pixels into various constituent class 

features. Together with the image derived endmembers, the algorithm performed very well, 

producing a mean classification accuracy of 99.48% based on RMSE accuracy assessment.

These classification results were then presented in the spatial distribution cover maps, which
!

revealed that the almost enclosed Winam Gulf was more severely affected by the aquatic 

plants infestation.

Using the classified data, the vegetation abundance (surface area coverage of aquatic plants) 

in the lake was estimated. Algorithm was used which took into account the fraction of 

vegetation in each pixel obtained from classified data and the estimated pixel size of MERIS 

FR imagery. The abundance results were presented in tables for the period 2003 -  2010, both 

for the entire lake and for Winam Gulf section.

9

The temporal variation o f the abundance o f aquatic plants in the lake (vegetation phenology)
*

over the study period 2003 -  2010 was presented in graphs. These results showed that 

vegetation cover in the Winam Gulf which was kept below 100 km2 during the years 2003 to
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2006 increased to a peak of about 200 km2 in 2007, before decreasing again to below 100 

km2 during the years 2008 to 2010.

Spatial distribution maps showed a high concentration o f Chl-a and TSM at the Kenyan side 

of the lake, the Winam Gulf. It is also in this side o f the lake that most o f the aquatic 

vegetation was found. Regression results revealed that vegetation proliferation responds to 

the variations in the conditions o f the water quality parameters and meteorological 

information after a delay period o f about two to three months. The optimal response periods 

were found to be about two and three months for TSM and Chl-a with correlation coefficients 

R = 0.46 and R = 0.57 respectively, while that o f rainfall was about three months with R = 

0.67. An inverse linear relationship between Chl-a and TSM was observed, with R = -0.77. 

With these optimal response periods and their respective regression equations, vegetation 

abundance prediction models were developed.

6.2 Recommendations
/

A comparison could be made to find out that which produces better results between the image 

derived and field derived endmember spectral libraries. It could be also o f importance to find 

out the level o f eutrophication each o f the water classes represents.

A comparison should be made between spectral unmixing and other classification techniques 

to ascertain the efficiency o f each and determine the most appropriate method for detecting 

aquatic vegetation.

There is need to search for a more accurate time delay between the occurrence o f a significant 

change in the quantities and condition o f the water quality parameters and the meteorological 

information and, the response o f the aquatic vegetation to these changes. In order to 

determine more accurate time delays, the effect of vegetation movement into and out of 

Winam Gulf (the region of interest considered in developing prediction models) as well as the 

human activities such as weed harvesting should be considered.
4

Availability o f suitable data is one of the greatest challenges to the proper monitoring of 

vegetation proliferation in Lake Victoria, owing to the large extent o f the lake and the severe
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clouds cover in the region. For proper monitoring o f  aquatic vegetation, at least a bi-weekly

data frequency, and possibly acquired locally, is recommended for developing an automatic

monitoring system.
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