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A B S T R A C T

Effects of live and dry feeds on intestinal morphology and growth of African catfish, Clarias gariepinus, larvae
(Burchell, 1822) were investigated from 2 days post hatching (dph) to 6 dph and 11 dph, respectively. Feeding
trials were carried out at Fleuren and Nooijen hatchery, Netherlands, in glass tanks connected to a RAS system.
Five test diets (Artemia nauplii combined with dry feed (A), decapsulated Artemia cysts combined with dry feed
(B), Artemia nauplii only (C), decapsulated Artemia cysts only (D) and commercial dry feed (E)) were assigned
randomly in triplicate. The proportion of live feed in the combined diets was gradually reduced until 6 dph.
Thereafter, all treatments were fed on the dry feed. Histological parameters were analysed in the proximal,
middle and distal part of the intestine using standard H and E staining methods. At the end of the experiment,
final wet weight (17.90 ± 0.38mg) and specific growth rate (SGR) (24.12 ± 0.35%/day) were significantly
higher (P < 0.05) in larvae fed nauplii combined with dry feed. A diet of decapsulated Artemia cysts resulted in
the lowest values for these parameters (8.90 ± 0.44mg and 17.18 ± 0.28%/day, respectively). FCR was best
in the diets using nauplii only (0.53 ± 0.12) or nauplii combined with dry diet (0.70 ± 0.30). Feeding dec-
apsulated Artemia cysts or its combination with dry feed resulted in the poorest (1.62–1.66) FCR values.
Microscopic observation of the intestinal morphology demonstrated a decrease of mucosal folds, mucosal fold
height, perimeter ratio (inner/outer perimeter) and wall thickness from the proximal to the distal intestine at 6
dph. Generally mucosal morphometric parameters were significantly (P < 0.05) higher when feeding nauplii
combined with dry feed, than when feeding other diets. Goblet cells counts relative to PAS staining decreased
from the proximal to the distal intestine. Nauplii and its combination with dry feed resulted into significantly
(P < 0.05) higher counts of goblet cells in all intestinal parts. The highest goblet cell count was on 4 dph (range
57–254) before decreasing by 6 dph (32–54) in all diets. A gradual reduction of nauplii daily ration in its
combination with dry feed stimulated morphological development that resulted in improved growth perfor-
mance. Different starter feeds thus had an impact on intestinal morphological development and on growth in the
larval phase, but could also affect further rearing results.

1. Introduction

The growth and survival of fish is dependent on many factors, in-
cluding the nutritional composition of the diet, the environmental
conditions, and the organism's digestive capacities. The development of
an efficient digestive capacity is reflected in the anatomy of the gas-
trointestinal tract, of accessory digestive organs and in the production
of digestive enzymes (Ikpegbu et al., 2013). The ontogenetical

development of the gastrointestinal tract is similar in all teleosts and is
initiated by endogenous feeding at hatching (Govoni et al., 1986;
Grosell et al., 2010; Wilson and Castro, 2010). However, there are
differences between species in the presence or rate of stomach devel-
opment, the shape of the gut, intestinal differentiation and function-
ality, which reflect differences in trophic levels (Khojasteh, 2012).
Thus, understanding the progressive changes in the gastrointestinal
tract of fish larvae is important in defining a proper larval feeding and
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weaning strategy (Osman et al., 2008; Gisbert et al., 2008).
The complexity of the intestinal morphology in fish varies with age

and is also influenced by the quantity and quality of the feed (Gisbert
et al., 2004, 2008; Rønnestad et al., 2013). Studies on the intestinal
morphology of larvae have been conducted in various species of catfish,
such as Ompok bimaculatus (Pradhan et al., 2014), Pseudoplatystoma
punctifer (Gisbert et al., 2014), Rhamdia quelen (Silveira et al., 2013)
and Clarias gariepinus (Verreth et al., 1992), showing that the intestinal
morphology affects the digestibility and absorption of nutrients
(Khojasteh, 2012).

C. gariepinus Burchell, 1822, is an indigenous African fish species,
cultivated globally because it is hardy and easy to produce in captivity
(Solomon et al., 2015). It is considered a delicacy in Africa, is used as
bait for Lates niloticus fishing in Lake Victoria and as a regulator of
Oreochromis niloticus population in ponds (Musa et al., 2013; Alfaro
et al., 2014). The production of this species is increasing globally both
in quantity and in value (Moffitt and Cajas-Cano, 2014). However, its
production potential in Africa is not fully exploited because of the
shortage of quality larvae, the low quantity and quality of available fish
feed, as well as high feed prices (Munguti and Ogello, 2014). Ad-
ditionally, its larval stage, the most sensitive life period, shows slow gut
maturation and radical shifts in dietary demands in relation to changes
in gut morphology and functioning (Verreth et al., 1994; Kolkovski,
2001; Adriaens et al., 2001; Grosell et al., 2010).

In C. gariepinus, the larval stage starts with exogenous feeding on the
third day post-hatching (Verreth et al., 1992; Olaniyi and Omitogun,
2014). Different studies have suggested that the larval stage might end
at different larval lengths with the development of the fully differ-
entiated median fin-fold (Balon, 1975), or with the development of a
functional stomach (Stroband and Kroon, 1981; Verreth et al., 1992).
As such, the duration of this stage is thus not clearly defined for this
species (Chepkirui-Boit et al., 2011).

The larval stage of C. gariepinus has incomplete digestive organs at
first feeding and thus relies on live feeds (Verreth et al., 1992). Earlier
studies have shown that different starter feeds may be used for the
species with success (Uys and Hecht, 1985; Verreth and Van Tongeren,
1989; Hecht, 1996; Awaiss and Kestemont, 1998; El-Sebaie et al., 2014;
Adewumi, 2015). Artemia nauplii are often preferred over other types of
live feed because they result in better larval growth and reduced mor-
talities (Hecht and Appelbaum, 1987). However, the hatching of Ar-
temia cysts and handling (harvesting and storage) of the nauplii is time
consuming and requires specific equipment and skills. Also, the nutri-
tional value of this live food may vary with the strain, the batch of cysts
and the developmental stage of the nauplii (Van Stappen, 1996). This
leaves hatchery operators with the alternative of using decapsulated
Artemia cysts that combine the benefits of the nutritional value of Ar-
temia nauplii and the practical advantages of dry feeds (Verreth and
Den Bieman, 1987). However, decapsulated Artemia cysts are unavail-
able to most African hatchery managers and sink relatively fast in
freshwater, thus becoming unavailable for ingestion and utilization by
catfish larvae (Verreth and Den Bieman, 1987), that feed by sucking
their prey, detected by chemosensory stimuli, from the water surface or
column (Bruton, 1979; Hossain et al., 1998; Freyhof, 2014). On the
other hand, dry feeds are generally available year round, although high
quality commercial dry feeds are sometimes unavailable and always
expensive in Africa (Munguti and Ogello, 2014; Musa et al., 2013). In
order to work out an optimal but also affordable larval feeding strategy,
research efforts have thus been conducted focusing on combined
feeding with both live and dry feeds (Awaiss and Kestemont, 1998;
Chepkirui-Boit et al., 2011).

Different starter feeds have however diverse effects on fish larvae
digestive ontogeny. These effects have been analysed by techniques
such as histochemistry, morphometry, immune-histochemistry and
stereology (Gisbert et al., 2008; Zambonino-Infante et al., 2008;
Rašković et al., 2011; Rønnestad et al., 2013). In the C. gariepinus
larvae, the ontogeny of the gastrointestinal tract, especially the

multifunctional intestine (Jutfelt, 2011; Grosell et al., 2010), has been
described histologically (Kolkovski, 2001; Osman et al., 2008; Olaniyi
and Omitogun, 2014). The effects of different starter feeds on the in-
testinal morphological parameters (such as the number and height of
the mucosal folds, the goblet cells counts) have been described quali-
tatively through immune histochemical methods (Verreth et al., 1992).
However, literature on other intestinal parameters such as perimeter
ratio, mucosal thickness and general intestinal morphometrics is scarce
despite the dependence of the intestinal morphology and morpho-
metrics on the diet (Ikpegbu et al., 2013; Pradhan et al., 2014). The aim
of the present study was thus to get a better understanding of the effects
of different starter feeds in relation to the development of the intestinal
morphology and growth in C. gariepinus larvae. To assess the effect of
the use of live feed as starter feed, both Artemia nauplii and dec-
apsulated Artemia cysts were used, either supplied as sole diet, or in
combination with dry feed.

2. Materials and methods

2.1. Experimental fish larvae and experimental design

The larval feeding test took place at Fleuren and Nooijen B.V.,
Someren, the Netherlands, in a recirculation system (RAS) comprising
15 glass aquaria of 150 L each, a sedimentation tank, biofilter and UV
unit, with a rearing temperature of 27.5 ± 0.5 °C and pH of 7.0–7.1.
Aeration in each aquarium was provided by a single air stone and water
flow was maintained at 2.6 Lmin−1. A gravid female was stripped, eggs
fertilized and incubated at 29 °C as described by De Graaf and Janssen
(1996). On the morning of the second day post-hatching (2 dph), each
glass aquarium was randomly stocked at 26 larvae L−1. The aquaria
were randomly assigned to one of the 5 diets (Table 1) in triplicate and
feeding started the same evening. The following dietary sources were
used: commercial dry feed (Skretting “Gemma micro 150” of
100–200 μm particle size); nauplii and decapsulated cysts of Great Salt
Lake-type Artemia franciscana Kellogg 1906 (Ocean Nutrition, Belgium).
These were fed alone, or in combination. The nutritional composition of
these feed sources was provided by the respective suppliers (Table 2),
and their dry weight was analysed at the Laboratory of Aquaculture &
Artemia Reference Center, Ghent University, Belgium. In the treatments
with a combination of Artemia and dry diet (treatments A and B), the
amount of Artemia nauplii (A) and decapsulated Artemia cysts (B) was
decreased by 20% daily, while the amount of dry feed increased by 20%
daily, until 6 dph. The percentage increase or decrease was based on the
dry weight of each diet. Thereafter, all larvae were fed on 100% dry
feed until the end of the experiment at 11 dph (Table 1). Diets were
broadcasted in the respective tanks at 25% wet body weight per day
(WBW d−1) until 6 dph and at 20%WBWd−1 from 7 dph until the end

Table 1
Dietary treatments and feeding protocol for C. gariepinus larvae from 2 dph (stocking) to
11 dph.

Test diet Days post-hatching

2 3 4 5 6 7–11

A 100% C 80%
C+20% E

60%
C+40% E

40%
C+60% E

20%
C+80%
E

100%E

B 100% D 80%
D+20%
E

60%
D+40%
E

40%
D+60%
E

20%
D+80%E

100%E

C 100% 100% 100% 100% 100% 100%E
D 100% 100% 100% 100% 100% 100%E
E 100% 100% 100% 100% 100% 100%E

Test diets: Artemia nauplii + commercial dry feed (A), decapsulated Artemia
cysts+ commercial dry feed (B), 100% Artemia nauplii (C), 100% decapsulated Artemia
cysts (D), 100% commercial dry feed (E).
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of the experiment. Larvae were weighed daily to adjust the feeding rate.
Each day, freshly hatched Artemia nauplii were stored at +4 °C

according to the procedures of Van Stappen (1996), and the daily ration
fed to catfish larvae (treatments A and C) was calculated based on the
individual dry weight of an Artemia nauplius and the density of nauplii
in the stored suspension. C. gariepinus larvae were fed 6 times a day
between 9 am and 9 pm. Excess feeds at the bottom of the aquaria were
siphoned daily before feeding. Dissolved oxygen, NO2

− and NH4
+ were

measured every 2 days.

2.2. Growth parameters

Sampling for growth measurement was done on days 2, 4, 6 9 and
11 (dph). For this purpose, a total of 30 C. gariepinus larvae were
weighed to the nearest 0.1 g, using a mechanical balance (KB 360-3N).
Total length was measured to the nearest 0.01mm under a KD 3320
microscope fitted with a Nikon camera and digital graphics Clemex
vision PE. The larvae were dried to a constant weight in a Heraeus
D6345 oven at 103 °C for 4 h and their dry weight was determined to
the nearest 0.01mg (Sartorius balance). The specific growth rate (SGR)
and food conversion ratio (FCR) were calculated as follows:

= =

−

∗FCR
Amount of dry feed supplied

Wet weight gain
SGR lnWt lnW0

t
100

With ln=natural log; Wt=weight at time t and Wo= initial
weight.

2.3. Histological sampling and analysis

The effects of different test diets on the intestinal morphological
parameters of the C. gariepinus larvae were assessed at 2, 4 and 6 dph.
Three live fish larvae were randomly sampled at 2 dph to serve as a
control. This was done in the morning, before stocking them in the
aquaria, and well before the start of exogenous feeding that took place
in the evening of the same day. At 4 and 6 dph, one live larva was
randomly sampled from each replicate, quickly fixed in Bouin solution
for 12 h before it was preserved in 70% ethanol for analysis at the
Department of Morphology, Faculty of Veterinary Medicine, Ghent
University, Belgium. All preserved samples were dehydrated in a
graded series of ethanol in a tissue processor STP 420D over 15 h,
embedded in paraffin and cooled to blocks on EC 350-1 microm and EC
350-2 microm as described in Gurcan et al. (2009).The relative position
of section 1 (proximal), 2 (middle), and 3 (distal) of the intestine on the
blocks was obtained based on Holden et al. (2013). For each of these
three sections, five slices of 5 μm size were cut per fish larva using a HM
360 microtome for viewing on the same slide. This was followed by
Hematoxylin and Eosin (H and E) and PAS (Periodic Acid Schiff)
staining and mounting following the description in Fischer et al. (2008).
Out of these five, three field views were randomly taken for observation
under the light microscope for morphometric measurements and counts
(Table 3), totalling nine measurements per section (3 views per larva,
with one larva for each of the three replicates per treatment). Goblet
cells were counted for the entire field view, and calculated for sake of

standardization per 100 μm length of the inner perimeter. Photo-
micrographs of selected fields were captured by a DP50 digital camera
fitted to a BX61 Olympus light microscope. The histological measure-
ments and counts were analysed according to Dimitroglou et al. (2011),
using the imaging analysis software Cell^Fare.

2.4. Statistics

Statistical analysis was conducted using SPSS statistics version 20.
One-way analysis of variance (ANOVA) was performed to test the ef-
fects of test diets on all parameters of water quality, growth and in-
testinal morphology. Significant differences between means were tested
by Tukey's HSD and considered significant at P < 0.05. Prior to data
analysis, all data sets were subjected to normality and homogeneity of
variance tests using Kolmogorov Smirnov's (Zar, 1999) and Levene's
(Levene, 1960) tests, respectively. All data passed the tests for nor-
mality and homogeneity. Water quality parameters (DO, NO2

−, NH4
+),

growth parameters (wet weight, daily growth, total length, SGR, FCR)
and intestinal morphological parameters (mucosal folds, mucosal
perimeter, mucosal thickness and goblet cells) were expressed as mean
and standard error (SE).

3. Results

3.1. Water quality

The results of measurements of DO, NO2
− and NH4

+, taken every
2 days, are summarized in Table 4. There were no significant differ-
ences (one-way ANOVA, p > 0.05) in water quality parameters among
the different treatments. The water quality parameter values remained
rather stable throughout the culture period, and were well within the
tolerance range of C. gariepinus larvae (Boyd, 1990).

3.2. Growth

At the end of the feeding experiment, growth in terms of final wet
weight, daily growth and SGR was significantly (P < 0.05) higher in
diet A (Artemia nauplii+ dry feed), than in all other treatments
(Table 5). Diet C (nauplii only) was second best for these growth
parameters. In terms of final body length, there was no significant
difference between treatments A and C, and these treatments were
significantly better than the three others. Feeding decapsulated Artemia
cysts only (D) resulted almost always in significantly lower growth
values compared to all other dietary treatments. Also decapsulated
Artemia cysts combined with dry feed (diet B) resulted in lower values
than the dry feed diet alone (E). A similar pattern was found for FCR,
with the best values found when feeding Artemia nauplii alone (C) or
nauplii combined with dry feed (A), whereas offering decapsulated
Artemia cysts (B and D) recorded the most unfavourable FCR values.
Feeding the dry diet alone (E) gave an intermediate FCR (Table 5).

3.3. Histology

3.3.1. Mucosal folds
The microscopic investigation of the proximal, middle and distal

intestine revealed effects of the diets tested on the larval intestinal
morphology. At 2 dph, different sections of the intestine were not
clearly differentiated (Fig. 1). The number of mucosal folds decreased
from proximal to distal intestine but the numbers increased over time
from 2 dph (Fig. 1) to 4 dph and to a limited extent from 4 to 6 dph
(Table 6). Larvae fed with Artemia nauplii in diets A and C had almost
always significantly (P < 0.05) more mucosal folds than larvae fed all
other diets. Larvae fed decapsulated Artemia cysts only (D) produced
significantly lower values than all other diets, whereas diets B and E
resulted in intermediate values (Table 6). The mucosal folds of the best
performing diet (A), the worst performing diet (D) and an intermediate

Table 2
Nutrient composition (as provided by commercial suppliers of feed products) and dry
weight of experimental feeds.

Type of feed % Nutrient composition Dry weight
(%)

Protein Lipid Fibre Ash

Artemia nauplii 60 24 - 4.4 7.27
Decapsulated Artemia cysts 54 9 6.0 4.0 95.28
Dry feed (Skretting ‘Gemma

micro 150’)
59 14 0.2 13.0 91.43

Dash (-)= not analysed.
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diet (E) are shown in Fig. 2.

3.3.2. Mucosal height
The mucosal fold height steadily increased from 2 to 6 dph but

decreased from the proximal to the distal part of the intestine in all
diets (Table 7). Significant differences between the diets were only
found at the proximal part, both at 4 and 6 dph. Diet A (nauplii and dry
feed) produced the highest values for mucosal fold height, although the
differences with the other diets were not always significant. Feeding
decapsulated Artemia cysts only (D) produced significantly lower mu-
cosal folds heights compared to diets A, C and E. Feeding dry diet (E)
resulted in intermediate values (Table 7).

3.3.3. Mucosal perimeter ratio (IP/OP)
The perimeter (IP/OP) ratio increased over larval development,

with a general decrease from proximal to distal in all diets investigated.
Significant differences between diets were only discerned in the prox-
imal and middle intestine (Table 8). Generally, larvae fed nauplii
combined with dry feed (A) had significantly (P < 0.05) higher IP/OP
ratio compared to all other diets. At 6 dph, larvae fed decapsulated
cysts combined with dry feed (B) or decapsulated cysts alone (D) gen-
erally had significantly lower IP/OP ratio compared to the rest. Diet C
and E fed larvae showed intermediate values (Table 8).

3.3.4. Mucosal thickness
In all diets mucosal thickness increased with the days post hatching

and generally decreased from the proximal to the distal part of the
intestine. A significant effect of the diets was found in every section
(Table 9). At 4 and 6 dph, larvae fed on decapsulated Artemia cysts (D)
and its combination with dry feed (B) often had significantly
(P < 0.05) higher mucosal thickness compared to the other diets. In
most cases there were no significant differences at 4 and 6dph between
Artemia nauplii only (C), its combination with dry feed (A) and dry feed
only (E) (Table 9).

3.3.5. Goblet cell counts
PAS staining of the mucosa epithelium revealed the presence of

magenta stained goblet cells scattered on the intestinal mucosa (Fig. 3).
The number of goblet cells per 100 μm IP length increased from 2 to 4
dph before decreasing on 6 dph in all sections (Table 10). The goblet
cells generally increased from the proximal to the distal intestine except
in the larvae fed for Artemia nauplii only (C). Except for the proximal
intestine, larvae fed on nauplii combined with dry diet (A) generally
had the highest counts of goblet cells per 100 μm IP at 4 and 6 dph,

compared to the other diets, and the differences were mostly significant
(P < 0.05). Feeding decapsulated Artemia cysts only (D) often gave
significantly (P < 0.05) lower goblet cell counts compared to all other
diets evaluated. Larvae fed diets B (cysts and dry diet), C (nauplii) and E
(dry diet) generally gave intermediate goblet cell counts (Table 10).

4. Discussion

Live and dry feeds have been used as starter feed for C. gariepinus
larvae in fish hatcheries (Uys and Hecht, 1985; Verreth and Van
Tongeren, 1989; El-Sebaie et al., 2014; Adewumi, 2015). Artemia is a
standard starter feed as it generally results in improved larval perfor-
mance. However, it is expensive and may not be available as and when
required. Therefore, for practical and financial reasons, efforts have
been directed in seeking alternatives to Artemia use (Agadjihouèdé
et al., 2012; Brüggemann, 2012). The current study investigated the
effects of different starter diets on C. gariepinus larvae performance
through analysis of the intestine's morphological development and as-
sessment of the larvae growth.

The development of the digestive tract is similar among all teleost
fish and proceeds in three major stages (Zambonino-Infante et al.,
2008). The first stage begins with hatching and ends with the end of
endogenous feeding, during which the larva depends on yolk sac and oil
globules for all energy and nutritional requirements. In this stage the
larva shows a relatively undifferentiated digestive system, with closed
mouth and anus. The second stage starts with exogenous feeding (which
is approximately 48 h after hatching when the larva is reared at
28–30 °C). During this stage the digestive tract has distinct regions,
including a clear and functional intestine (Verreth et al., 1992), with
different sections of the intestine acquiring distinct histological fea-
tures. The intestine forms the main site for absorption and digestion
(Gisbert et al., 2008). The digestive system is fully functional, with the
exception of the stomach (Segner et al., 1993). The second stage is
considered critical for larval survival because of increased metabolic
rate and because improper feeding at this stage may affect subsequent
performance of the animal. The third and last stage is marked by a drop
of the gastric pH about 5 days after the start of exogenous feeding. It
marks the onset of a functionally mature digestive tract (Govoni et al.,
1986), including a functional stomach with the stomach epithelium
becoming structurally differentiated (Rønnestad et al., 2013). Feeding
trials started the evening of 2 dph, when larvae would be in the second
stage of digestive development, according to the classification de-
scribed above. Histological sections were all taken in larvae in the
second stage (2–6 dph): the progressive changes observed in these

Table 3
Intestinal mucosal parameters of C. gariepinus larvae measured after 5 days of feeding on different diets.

parameter Mucosal folds Mucosal perimeter Mucosal thickness Goblet cell

N H IP OP IA OA

Unit Counts μm μm μm μm2 μm2 Entire view counts

H=height; N= number; IP= inner perimeter; OP= outer perimeter; IA= inner area; OA=outer; mucosal fold height= distance between the base of the fold and its apical tip in the
lumen; IP= total length of mucosal epithelium lining the lumen; OP= total length of serosal epithelium; IA= total area within the IP (=luminal area); OA= total area within the OP.

Table 4
Water quality parameters (mean ± SE of three replicates, measured every 2 days) in the C. gariepinus larvae rearing tanks over the 10 days experimental period.

Water parameter Diet

A B C D E

DO (mg/l) 6.54 ± 0.03 6.34 ± 0.01 6.51 ± 0.13 6.53 ± 0.05 6.10 ± 0.02
NO2

− (mg/l) 0.03 ± 0.02 0.03 ± 0.00 0.03 ± 0.03 0.02 ± 0.02 0.03 ± 0.01
NH4

+ (mg/l) 0.06 ± 0.02 0.06 ± 0.02 0.06 ± 0.03 0.06 ± 0.04 0.10 ± 0.01

For explanation of diets A–E, see Table 1.
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larvae are an important indicator of their ability to cope with different
food sources. Further, adjusting first feeding with ontogenetic changes
at this stage optimizes the feeding process and nutritional assimilation
(Osman et al., 2008).

As exogenous feeding started, larvae were observed swimming
within the water column, capturing the prey and ingesting it. At this
stage, larvae show improving musculature for locomotion activities, the
mouth aperture has opened and there is increased development of
barbels with taste buds around the mouth (Olaniyi and Omitogun,
2014). As the larva also has developed vision by 3 dph (Adriaens et al.,
2001; Osman et al., 2008; Olaniyi and Omitogun, 2014), these func-
tions allow for increased efficiency in prey detection (Hecht and
Appelbaum, 1987; Mukai and Lim, 2011; Prokešová et al., 2017).

All growth parameters investigated (Table 5) were significantly
higher (P < 0.05) when feeding nauplii combined with dry feed. This
could be attributed to the advantage of combined protein proportions
and vitamins from these diets (Awaiss and Kestemont, 1998). In addi-
tion, the involvement of exogenous digestive enzymes from Artemia
nauplii could have enhanced digestion and absorption (Aderolu et al.,
2010). The results of the current study are in line with previous studies
(Appelbaum and McGeer, 1998; Awaiss and Kestemont, 1998;
Chepkirui-Boit et al., 2011) that showed a significantly higher growth
when using combined diets, consisting of nauplii and dry feed.

Larvae fed decapsulated Artemia cysts performed poorer (Table 5)
compared to all other diets, although this is reportedly an ideal starter
feed for C. gariepinus larvae (Verreth et al., 1992; Garcia-Ortega et al.,
1998; Adewolu et al., 2009; Olurin et al., 2012; Ngupula et al., 2014).
Similar results, however, have also been reported in Asian catfish
Hemibagrus wyckioides (Hung et al., 2002). Verreth and Den Bieman
(1987) suggested that low performance of the decapsulated Artemia cyst
diet can be linked to its fast sedimentation during feeding, making it
unavailable for ingestion and utilization. In addition, the African catfish
larva is reported to prefer larger prey sizes, possibly to optimize energy
(Prokešová et al., 2017), and this might disfavour the uptake of dec-
apsulated Artemia cysts, which are about half the size of instar I nauplii
(Van Stappen, 1996). Further, decapsulation and drying procedures
might have affected the cyst protein quality which is essential for its use
as a starter feed (Pector et al., 1994; Van Stappen, 1996; Garcia-Ortega

et al., 2000). Dry feed fed larvae recorded a better performance com-
pared to those fed on either a combination of decapsulated Artemia
cysts and dry feed, or decapsulated Artemia cysts only. This suggests a
better feed quality, digestibility, bioavailability and ease of assimilation
properties of the dry feed.

The SGR of C. gariepinus larvae ranged between 17.2% d−1 and
24.1% d−1 (Table 5). Larvae fed Artemia nauplii combined with dry
feed had a significantly (P < 0.05) higher SGR compared to other diets
investigated. However, the SGR range found was lower compared to
earlier studies (Vandecan et al., 2011). This observation may be at-
tributed to differences in feeding frequency and feeding level which
affects feed availability and chances of feed uptake (Verreth and Den
Bieman, 1987; Aderolu et al., 2010; Al Zahrani et al., 2013). A similar
pattern was observed in mean FCR values with a range of 0.53–1.66.
Larvae fed on Artemia nauplii or its combination with dry feed had an
FCR in the range 0.53–0.70 (Table 5). These results are in line with
those of Vandecan et al. (2011) who, using Artemia of the same origin
and the same dry feed as in this study showed that nauplii and its
combination with dry feed reported better FCR compared to dry diets
alone.

Earlier studies have described nutritionally induced changes in fish
larvae based on histological analysis of the intestine (Govoni et al.,
1986; Verreth et al., 1992; Pradhan et al., 2014). The intestine may
show variable but reversible morphology in relation to food quality and
quantity. In the current study, morphological investigation demon-
strated dietary effects on the intestinal histology of the C. gariepinus
larvae. The mucosal fold counts, height, perimeter ratio and thickness
decreased from the proximal to the distal intestine in all diets (Tables 6-
9), suggesting gradual mucosal cell development. Intestinal mucosal
morphometric parameter values increased with age in all diets in-
vestigated, as observed in other teleosts (Zambonino-Infante et al.,
2008). Larvae fed with nauplii combined with dry feed showed sig-
nificantly higher mucosal fold counts, height and perimeter ratio va-
lues, indicating increased surface area for digestion and absorption.
This observation can be attributed to increased amounts of nutrients in
the intestinal lumen, provided by this diet, which directly stimulated
positive development of the mucosa for efficient digestive function
(Rios et al., 2004). Furthermore, high protein and lipid proportions in

Table 5
Growth parameters (mean ± SE, n=9) of C. gariepinus larvae after 10 days of feeding on different diets.

Parameter Diet

A B C D E

Final wet weight (mg) 17.90 ± 0.38a 10.80 ± 0.59d 16.20 ± 0.84b 8.90 ± 0.44e 13.40 ± 0.67c

Daily growth (mg d−1) 1.67 ± 0.02a 1.22 ± 0.02d 1.51 ± 0.05b 0.75 ± 0.01e 1.39 ± 0.01c

Final body length (mm) 12.35 ± 0.30a 10.43 ± 0.36b 11.88 ± 0.34a 9.95 ± 0.29c 11.13 ± 0.32b

SGR (%/day) 24.12 ± 0.35a 19.39 ± 0.35cd 22.81 ± 0.29b 17.18 ± 0.28d 21.60 ± 0.30c

FCR 0.70 ± 0.30a 1.62 ± 0.10c 0.53 ± 0.12a 1.66 ± 0.21c 1.03 ± 0.12b

Values in the same row with different superscripts are significantly different (P < 0.05). For explanation of diets A–E, see Table 1.

Fig. 1. Microphotographs of C. gariepinus larvae intestinal mucosa folds, obtained at 2 dph before start of feeding, from sections 1 (proximal), 2 (middle) and 3 (distal) (left, middle and
right pictures, respectively; H and E staining, objective× 40).
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the nauplii and its combination with dry feed could have increased
protease activities or prolonged cytosolic enzyme activities compared to
decapsulated Artemia and its combination with dry feed (Garcia-Ortega
et al., 1998; Lazo et al., 2007). Increased growth when using the diet
with nauplii can be related to improved diet contact time with the
absorptive area and increased protein digestion, thus increased nutrient

utilization (Rønnestad et al., 2013; Fang et al., 2015). These findings
deviate from those reported on Pseudoplatystoma punctifer by Gisbert
et al. (2014), probably because of differences in feeding history (Grosell
et al., 2010). Poorer mucosal morphometrics with decapsulated Artemia
cysts and its combination with dry feed (Tables 6–10) was an indication
of partial starvation, possibly due to unavailability of this diet for

Table 6
Mucosal fold counts (mean ± SE, n= 9) at 2, 4 and 6 dph for section l (proximal), 2 (middle) and 3 (distal) of the intestine in C. gariepinus larvae fed on different diets.

Section DPH Diet

A B C D E

1 2 9.56 ± 0.30 9.56 ± 0.30 9.56 ± 0.30 9.56 ± 0.30 9.56 ± 0.30
4 30.88 ± 0.61a 21.00 ± 87c 29.52 ± 0.52a 21.49 ± 0.55d 26.00 ± 0.61b

6 31.87 ± 0.50a 28.12 ± 0.60b 30.45 ± 0.40ab 25.78 ± 0.60c 28.51 ± 0.40b

2 2 8.00 ± 0.30 8.00 ± 0.30 8.00 ± 0.30 8.00 ± 0.30 8.00 ± 0.30
4 16.78 ± 0.87 13.78 ± 0.63 14.66 ± 1.30 14.67 ± 0.97 16.00 ± 1.00
6 20.01 ± 1.20a 17.34 ± 1.30b 16.00 ± 1.20b 14.85 ± 0.93c 16.11 ± 1.50b

3 2 4,92 ± 35 4.92 ± 0.35 4.92 ± 0.35 4,92 ± 0.35 4.92 ± 0.35
4 9.57 ± 0.57a 8.00 ± 0.87b 9.00 ± 0.30a 5.77 ± 0.57c 8.33 ± 0.30b

6 10.44 ± 0.60a 8.00 ± 0.40b 9.79 ± 0.34a 5.87 ± 0.60c 8.00 ± 0.40b

Values in the same row with different superscripts are significantly different (P < 0.05). Values in the same row without superscripts are not significantly different (P≥ 0.05). For
explanation of diets A–E, see Table 1.

1D 3D

1A 2A 3A

2D

1E 2E 3E

Fig. 2. Microphotographs of C. gariepinus larvae intestinal mucosa folds obtained at 6 dph with diets A (Artemia and dry feed; top row), D (decapsulated cysts only; middle row) and E (dry
feed only, bottom row) from sections 1 (proximal), 2 (middle) and 3 (distal) (left, middle and right pictures, respectively; H and E staining, objective× 20).

C. Nyang'ate Onura et al. Aquaculture 489 (2018) 70–79

75



Table 7
Mucosal fold height (μm, mean ± SE, n= 9) at 2, 4 and 6 dph for section l (proximal), 2 (middle) and 3 (distal) of the intestine in C. gariepinus larvae fed on different diets.

Section DPH Diet

A B C D E

1 2 33.89 ± 1.52 33.89 ± 1.5 33.89 ± 1.52 33.89 ± 1.52 33.89 ± 1.52
4 57.44 ± 0.50a 51.63 ± 1.12bc 54.24 ± 1.10ab 47.91 ± 1.01c 55.07 ± 1.01ab

6 84.12 ± 1.40a 71.04 ± 1.20bc 76.23 ± 1.30ab 68.23 ± 1.61c 78.20 ± 0.51ab

2 2 32.86 ± 1.51 32.86 ± 1.51 32.86 ± 1.51 32.86 ± 1.51 32.86 ± 1.50
4 48.70 ± 3.12 47.90 ± 3.10 46.59 ± 3.12 43.05 ± 3.13 45.05 ± 3.14
6 63.32 ± 5.22 54.57 ± 3.41 56.19 ± 2.80 55.94 ± 3.41 61.91 ± 4.83

3 2 30.86 ± 1.50 30.86 ± 1.50 30.86 ± 1.50 30.86 ± 1.50 30.86 ± 1.50
4 34.88 ± 3.00 33.87 ± 3.21 35.18 ± 2.53 31.38 ± 3.01 34.94 ± 3.33
6 46.32 ± 2.00 46.73 ± 3.01 48.78 ± 2.50 48.43 ± 2.20 50.36 ± 3.21

Values in the same row with different superscripts are significantly different (P < 0.05). Values in the same row without superscripts are not significantly different (P≥ 0.05). For
explanation of diets A–E, see Table 1.

Table 8
Perimeter ratio IP/OP (mean ± SE, n= 9) at 2, 4 and 6 dph for section l (proximal), 2 (middle) and 3 (distal) of the intestine in C. gariepinus larvae fed on different diets.

Section DPH Diet

A B C D E

1 2 0.48 ± 0.02 0.48 ± 0.02 0.48 ± 0.02 0.48 ± 0.02 0.48 ± 0.02
4 1.70 ± 0.03a 1.18 ± 0.02b 1.20 ± 0.03b 1.19 ± 0.02b 1.40 ± 0.02b

6 1.79 ± 0.03a 1.43 ± 0.02c 1.48 ± 0.03b 1.36 ± 0.03c 1.50 ± 0.01b

2 2 0.37 ± 0.02 0.37 ± 0.02 0.37 ± 0.02 0.37 ± 0.02 0.37 ± 0.02
4 1.36 ± 0.03a 0.89 ± 0.03c 1.29 ± 0.02ab 0.91 ± 0.00c 1.20 ± 0.03b

6 1.52 ± 0.04a 1.39 ± 0.03bc 1.38 ± 0.04bc 1.25 ± 0.03c 1.43 ± 0.03ab

3 2 0.34 ± 0.01 0.34 ± 0.02 0.34 ± 0.00 0.34 ± 0.02 0.34 ± 0.02
4 1.12 ± 0.02a 0.87 ± 0.01a 0.95 ± 0.02a 0.98 ± 0.00a 1.31 ± 0.03a

6 1.15 ± 0.02a 1.04 ± 0.02a 1.02 ± 0.03a 0.79 ± 0.04a 1.05 ± 0.01a

Values in the same row with different superscripts are significantly different (P < 0.05). Values in the same row without superscripts are not significantly different (P≥ 0.05). For
explanation of diets A–E, see Table 1.

Table 9
Mucosal wall thickness (in 1000 μm2; mean ± SE, n= 9) at 2, 4 and 6 dph for section l (proximal), 2 (middle) and 3 (distal) of the intestine in C. gariepinus larvae fed on different diets.

Section DPH Diet

A B C D E

1 2 8.06 ± 0.14 8.06 ± 1.36 8.06 ± 1.36 8.06 ± 1.36. 8.06 ± 1.36
4 24.11 ± 0.48a 27.52 ± 0.55a 20.37 ± 0.39a 25.70 ± 0.47a 26.60 ± 0.53a

6 60.44 ± 0.34b 70.54 ± 0.87a 49.72 ± 0.83c 64.68 ± 0.36ab 60.72 ± 0.42b

2 2 6.59 ± 0.10 6.59 ± 0.10 6.59 ± 0.10 6.59 ± 0.10 6.59 ± 0.10
4 19.77 ± 0.52b 25.28 ± 0.49a 13.95 ± 0.32c 29.81 ± 0.71a 21.17 ± 0.44b

6 31.46 ± 0.33b 43.52 ± 0.72a 34.37 ± 0.57b 42.83 ± 0.71a 39.34 ± 0.66b

3 2 6.10 ± 0.11 6.10 ± 0.11 6.10 ± 0.11 6.10 ± 0.11 6.10 ± 0.11
4 19.82 ± 0.40b 25.23 ± 0.42a 19.28 ± 0.32b 22.14 ± 0.37ab 19.59 ± 0.43b

6 30.61 ± 0.50b 43.46 ± 0.51a 28.92 ± 0.48b 33.21 ± 0.55ab 28.19 ± 0.49b

Values in the same row with different superscripts are significantly different (P < 0.05). Values in the same row without superscripts are not significantly different (P≥ 0.05). For
explanation of diets A–E, see Table 1.

C

Fig. 3. Microphotographs of C. gariepinus intestinal mucosa folds obtained from section 1 at 4 dph with diet A (picture A), D (picture B) and E (picture C), PAS staining, objective×20.
The arrows point to goblet cells.
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ingestion as it sediments fast in water (Verreth and Den Bieman, 1987).
The low growth performance of the larvae fed with decapsulated Ar-
temia cysts and its combination with dry feed (Table 5) may also be
explained by nutrient deprivation, a consequence of tissue degeneration
following their disuse (Mackerel, 1986). However, feeding dec-
apsulated Artemia cysts and its combination with dry feed resulted in a
significantly thicker (Table 9) mucosal wall compared to all other diets,
which may be attributed to differences in the dietary protein structure
and to intestinal restructuring as an adaptation to reduced feed intake
(Garcia-Ortega et al., 2000; Gisbert et al., 2008; Fang et al., 2015), as
also found in Asian catfish (Pangasius bocourti) by Hung et al. (2002).
However, the proximal intestine in all diets showed a thick mucosal
wall, maybe because of increased mucosal muscle development as a
function of food type and quantities present (Ikpegbu et al., 2013). The
proximal intestine receives large quantities of chyme; high muscle en-
ergy is needed to propel it along by intestinal contraction (Rao et al.,
2010).

Gisbert et al. (2014) compared goblet cell counts in the larval de-
velopment of different Siluriformes (however not including C. gar-
iepinus). In our study a PAS staining of embedded C. gariepinus larvae
was conducted to test the influence of the diet on digestive efficiency,
important in larval rearing procedures and in studying digestive phy-
siology. Goblet cells were present before exogenous feeding, an in-
dication of absorptive preparedness. Earlier studies also report on the
presence of trypsin, chymotrypsin, amino-peptidase and esterase ac-
tivities in C. gariepinus larvae before exogenous feeding (Verreth et al.,
1992; Garcia-Ortega et al., 2000). Except for the larvae fed Artemia
nauplii only (diet C), goblet cell counts per inner perimeter unit length
(100 μm) increased from the proximal to the distal part of the intestine
(Table 10). When feeding nauplii alone, goblet cell counts were higher
in the proximal intestine, a section with increased protein and lipid
digestion due to pancreatic secretions as compared to the remaining
sections (Hamre et al., 2013), suggesting increased uptake and trans-
portation of amino acids and free fatty acids from protein and lipid
digestion, respectively (Grosell et al., 2010). Decapsulated Artemia cysts
and Artemia nauplii are reported to be nutritionally indifferent and with
biomolecules that stimulate enzyme secretion (Garcia-Ortega et al.,
2000). However, their combination with dry feed resulted into different
counts of goblet cells (Table 10). Different protein and lipid levels in
these diets (Table 2) might have resulted in different goblet cell
abundance (Kozarić et al., 2008; Hlophe and Moyo, 2014). Increased
goblet cells towards the distal intestine are in line with findings by
Pradhan et al. (2014) on butter catfish (Ompok bimaculatus) larvae fed
on nauplii combined with dry feed. More goblet cells in the anterior end
(as found when feeding Artemia nauplii only) was also reported in
earlier studies on green catfish (Mystus nemurus) by El Hag et al. (2012),
and tiger catfish (Pseudoplatystoma apunctifer) by Gisbert et al. (2014).
Differences in goblet cell counts when feeding different dry and live

diets may be related to the protein structure of the feeds used (Hlophe
and Moyo, 2014). The low values for goblet cell counts with larvae fed
decapsulated Artemia cysts was an indication for partial starvation and
reduced mucosal surface area for digestion and absorption. Accord-
ingly, poor growth was found for larvae fed with decapsulated cysts in
this study (Table 5).

Generally, goblet cell counts in teleosts increase with the days post
hatching (Gisbert, 1999). In the current study, goblet cell counts de-
creased from 4 dph to 6 dph (Table 10) in all diets investigated, im-
plying compromised absorptive efficiency. However, a reduction of
goblet cell counts may not just mean reduced numbers of cells, but
could also imply staining variability and differentiation of goblet cells
types (Kozarić et al., 2008; Zambonino-Infante et al., 2008; Uc, 2014).
PAS staining is only positive with neutral goblet cells, located near the
apical end of the mucosal fold. As such, a double staining (PAS for
neutral and blue alcin for acid goblet cells) is thus recommended to
fully ascertain goblet cell densities, types and their differentiation
during C. gariepinus larval development.

5. Conclusions and recommendations

Growth and intestinal morphology responded differently to dif-
ferent starter feeds. A gradual reduction of Artemia nauplii in its com-
bination with dry feed improved intestinal morphological development
and growth. There was no observed compensatory growth in larvae fed
decapsulated Artemia cysts, after feeding them with dry feed, to match
growth results obtained with other diets. Therefore, the impact of
starter feeds on intestinal morphological development affects larval
growth and may affect further rearing results after the starter feed
period. Future studies on intestinal microbial abundance in relation to
starter diets are recommended so as to assess their influence on growth
and intestinal development. Further, a cost-benefit analysis is important
in establishing the most economical starter feed, considering both the
costs of the respective feeds and the culture success obtained with them.
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