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H I G H L I G H T S

• We examined rainfall against
groundwater use at 221 water
points serving over 1.34 million
people in the arid regions of
Kenya and Ethiopia.

• A 22.3% increase in borehole
runtime follows weeks with no
rainfall.

• A 1 mm increase in weekly
rainfall was associated with a
1.0% decrease in borehole use.

• Groundwater boreholes are
critical infrastructure in
drought prone regions.
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A B S T R A C T

Millions of people in the arid regions of Kenya and Ethiopia face water scarcity and frequent drought. Water
resource forecasting and reliable operation of groundwater distribution systems may improve drought
resilience. In this study, we examined three remote sensing data sets against in-situ sensor-collected
groundwater extraction data from 221 water points serving over 1.34 million people across northern
Kenya and Afar, Ethiopia between January 1, 2017 and August 31, 2018. In models containing rainfall as a
binary variable, we observed an overall 23% increase in borehole runtime following weeks with no rainfall
compared to weeks preceded by some rainfall. Further, a 1 mm increase in rainfall was associated with a
1% decrease in borehole use the following week. When surface water availability is reduced during the dry
seasons, groundwater demand increases. Our findings emphasize the imperative to maintain functionality
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of groundwater boreholes in these regions which often suffer drought related emergencies. Funding pro-
vided by the United States Agency for International Development, the World Bank, the National Science
Foundation, and the Cisco Foundation. The views expressed in this article do not necessarily reflect the views
of the United States Agency for International Development or the United States Government.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Globally, access to freshwater is a key challenge, exacerbated by
the changing climate (Vörösmarty et al., 2000; Arnell, 1999). By 2025,
1.8 billion people will be living in countries or regions with absolute
water scarcity, and two-thirds of the world’s population could be liv-
ing under water stressed conditions, 80% of whom live in developing
countries (Schlosser et al., 2014).

Millions of people living in the arid, drought prone regions of the
East African Rift Valley, including parts of Ethiopia and Kenya, are
facing significant threat from a lack of safe, reliable and affordable
water (Shiferaw et al., 2014; Viste et al., 2013). The region has expe-
rienced increasing frequency and severity of drought conditions as a
result of decreased rainfall during the long rainy season from March
through May (Lyon, 2014), and drought is expected to increase in
severity and frequency over the coming years (Masih et al., 2014;
Ahmadalipour and Moradkhani, 2018). The 2011 drought in East
Africa caused food shortages for over ten million people and over
260,000 deaths (Nicholson, 2014; Shabelle, 2011). The more recent
2016 drought in Kenya resulted in over 3 million people facing food
insecurity (Uhe et al., 2017). These recent drought conditions rep-
resent an acute threat, and highlight the urgency of environmental
changes driving water shortage and creating a public health and
security emergency.

Average rainfall in East Africa has been declining over the past
several decades. In parts of this region, average rainfall has decreased
over 20% since 1990. This trend in rainfall is in stark contrast to
global climate model (GCM) predictions of an increase in regional
rainfall caused by climate change — a conundrum known as the East
Africa Climate Paradox (Rowell et al., 2015; Tierney et al., 2013). The
reason for the discrepancies between climate models and observed
conditions are not precisely known, but are likely related to global
and regional inconsistencies in ocean-atmosphere forcing by GCMs
as well as to short term environmental variability not captured by
the models (Uhe et al., 2017; Dai, 2011; Lyon and Dewitt, 2012).

In the arid regions of Kenya and Ethiopia, people are predomi-
nantly farmers and pastoralists reliant on reliable water sources for
agricultural, livestock and human uses. A mix of surface and ground-
water use is common. Surface water use, including streams, rivers,
lakes and other rain-filled depressions and ponds, is regular prac-
tice during the rainy seasons when surface water is readily available
(Mutiga et al., 2010; Opiyo et al., 2015; Hurni et al., 2005). Prolonged
drought is especially severe for smallholder farmers and pastoralists
reliant on surface water sources including streams, rivers and lakes.

A majority of farmers in Kenya report perceiving climate change
impacts on agricultural yields and have adopted some adaptation
strategies including changing crop varieties, planting dates and crop
types (Bryan et al., 2013). However, very few studies have attempted
to quantify the behavior of vulnerable populations in response to
the current drought conditions, and there is a relative absence of
data on water use patterns. Climate forecasting, in particular rain-
fall estimates and subsequent groundwater demand (Luseno et al.,
2003), as well as timely information used to maintain functionality
of groundwater provisioning systems, would likely be of benefit
for managing risks faced by pastoralist communities in Kenya and
Ethiopia.

For example, rainfall shocks in the Awash river basin in Ethiopia,
serving parts of the Afar Region, have a direct impact on agricultural

yields which propagate through the wider economy. A recent study
(Borgomeo et al., 2018) estimated that a rainfall decrease could lead
to a 10% decline in agricultural gross domestic product (GDP) and a
5% decline in overall regional GDP. This study estimated greater neg-
ative impacts among poorer households. When drought occurs, these
vulnerable populations are highly reliant on groundwater supply
to meet basic needs, typically by utilizing boreholes pumping deep
groundwater (Worqlul et al., 2017; Okotto et al., 2015).

The total global economic losses associated with inadequate
water supply and sanitation are estimated at $260 billion annually.
The capital cost for achieving universal access to water is esti-
mated by the World Health Organization (WHO) to be $141 billion
— with rural communities accounting for $62.3 billion of that total
(WHO, 2012). Recurrent operations and maintenance costs for uni-
versal access amount to approximately 10% of the capital costs,
about $1.2 billion per year. While considerable funding and effort is
aimed at providing increased access to water supplies, interventions
designed to provide these services often lack sustained support. As
the demand for groundwater increases, access to functional bore-
holes becomes a limiting factor across the vast region of East Africa.
However, reliable functionality and regular maintenance of these
groundwater supplies is lacking, often leading to significance service
gaps and exacerbating water stress (Hope et al., 2012; Koehler et al.,
2018; Foster et al., 2018; Nagel et al., 2015). For example, a recent
study estimates between 30 and 50 % of the millions of community-
managed water pumps installed in Africa are broken in the first
18 months (Foster, 2013).

2. Study context

Groundwater availability in the relatively deep aquifers in north-
ern Kenya and Afar Ethiopia fluctuate based on both natural and
human factors — the major drivers being rainfall which influences sub-
sequent access to surface water resources as well as aquifer recharge,
while the major driver of groundwater use is availability of working
groundwater pumps. In Afar, the groundwater aquifers are influenced
by active volcanic centers and thermal springs. Volcanic aquifer depth
range from 60 to over 150 m. Due to geothermal activity, the ground-
water at the point of borehole extraction is often over 50C (Kebede et
al., 2008), and pipes are hot to the touch. These volcanic aquifers are
recharged through annual mountain runoff and are thus susceptible
to drought conditions. In addition, groundwater reserves are limited
because of horizontal flux to the rift plains (Ayenew et al., 2008).

In northern Kenya comprehensive mapping of groundwater
resources has not been completed, but several indicators suggest
that groundwater extracted from boreholes is largely from fossil
aquifers and therefore is water that is not annually recharged. In
2013, five fossil aquifers were discovered in northern Kenya, pre-
dominately in Turkana. These aquifers are located 100 m or more
beneath the surface (Gramling, 2013). While some news reports indi-
cate high salinity above WHO limits (Migiro, 2015), these aquifers
are currently being exploited for livestock and agricultural uses.

Activity associated with borehole pumps is difficult to estimate, in
particular because there are few observation wells and no institution-
alized groundwater monitoring networks. To compensate for a lack
of quantitative monitoring, efforts to measure groundwater extrac-
tion include estimating the potential precipitation in the region by
combining in-situ and satellite-based remote sensing measurements.
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Examples include regionally calibrated satellite derived precipitation
data (Funk et al., 2015), and stream flow modeling. However, the
relationship between rainfall and groundwater use in Africa is not
well established, and is constrained by limited observational data
sets (Taylor et al., 2009). Regional water use surrounding the Lake
Naivasha in Kenya (van Oel et al., 2013) and the Geba River basin
in Ethiopia (Gebreyohannes et al., 2013) have been estimated with
water balance models that often lack groundwater abstraction data.

Data for groundwater collected by in-situ borehole sensors has
recently become available via two USAID funded programs, Lowland
WASH in Ethiopia and the Kenya Resilient Arid Lands Partnership
for Integrated Development (Short et al., 2018). Designed to address
information gaps in water service delivery and enable improved
response to broken pumps, sensors measuring groundwater pump
function have been installed across northern Kenya and Afar,
Ethiopia. The sensors (SweetSense Inc. Portland, Oregon, United
States) provide high temporal resolution data on borehole usage and
report over cellular and satellite networks as a means to directly

measure water service delivery. Here, we use this “Internet of
Things” network to estimate groundwater usage across the region
and correlate the data to satellite remote sensing as a means to quan-
tify borehole usage and to document relationships between direct
extraction of groundwater (borehole use) and estimates of surface
water availability (rainfall).

3. Data and methods

3.1. Groundwater extraction data collection

We collected groundwater extraction data from 221 water points
across northern Kenya and Afar Region, Ethiopia serving a total of
over 1.34 million people. 171 of these sites were monitored with
satellite connected sensors. Additionally, approximately 50 sites
were monitored with cellular connected sensors, however between
November 2017 and April 2018, the Ethiopian government restricted
cellular data service in the region, rendering the data collection

Fig. 1. Locations of sensor installations at groundwater boreholes in northern Kenya and Afar, Ethiopia.
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from these sites non-viable for this period. Each of these extraction
points consisted of electrically powered motorized pumps, extract-
ing water from depths ranging between 4 and 276 m. Each site
distributed water to elevated tanks and local distribution networks.
Water uses include livestock, irrigation, and drinking water, and we
estimate the pumps sampled in this study were used by an estimated
average of 2000 people in Kenya and 250 people in Ethiopia. Dis-
tribution schemes range between local access at the borehole site
up to pipes running 35 km away. The sensors function by monitor-
ing the electrical current associated with borehole pump operation.
The sensors have a sampling frequency of 40 min, and record the
duration of use of the each pump each day, with an error of up
to 40 min(the sampling window) per each separate activation of
the pump. The borehole monitoring in this study is representative
of water supply across northern Kenya and Afar, Ethiopia. Total
population in Afar is approximately 1.75 million (CSA and Bank,
2013), and in the five northern Kenyan counties is 2.57 million
(Kenya National Bureau of Statistics, 2014). See Fig. 1 for a map of
installation locations.

The sensor data indicates runtime of each groundwater extraction
pump. The sensors report daily over satellite or cellular networks
regardless of pump runtime, thereby allowing an identification of a
failed sensor differently from a non-operational pump. Time peri-
ods in which sensor data suggests a non-running pump may be
attributed to one of several scenarios including: a) planned down-
time inclusive of seasonal disuse, b) mechanical or electrical failures
of the water pump or water scheme, c) management or institu-
tional considerations such as budgetary constraints including buying
fuel, human resources, or communication challenges, and d) false-
negatives caused by sensor failure, including accidental or deliberate
tampering with the sensor device.

3.2. Survey data sets

Borehole water system characteristics were collected for the
majority of sites instrumented with sensors. Staff affiliated with part-
ner organizations and local government authorities were trained in
data collection, and use of a smartphone based survey tool, mWater

(New York, United States). In both countries, this survey data was
collected as part of comprehensive asset inventory efforts. Water
point characteristics, including age, well depth, average yield, and
operating characteristics were collected through interviews of local
operators and cognizant authorities. In most cases, original installa-
tion records are not readily available, and as such the survey data
presented should be considered local knowledge. Surveys were con-
ducted across the five northern Kenya counties, and in Afar Region,
Ethiopia.

3.3. Remote sensing data sets

For this study, we examined three remote sensing data sets and
attempted to correlate these to the sensor-collected groundwater
extraction data. First, we examined daily rainfall data at a given
well location. We used the Monthly Climate Hazards Group InfraRed
Precipitation with Station (CHIRPS) v2.0 (Funk et al., 2015). This is a
30+ year quasi-global rainfall dataset that incorporates 0.05 degree
(5 km) resolution satellite imagery with in-situ station data to create
gridded rainfall time series. Sensor locations provided in shapefile
formats were used as zonal locations of wells. Daily rainfall values for
the wells for 2017–2018 were extracted from the CHIRPS grids and
exported in form of tables for correlation analysis.

Second, we examined the vegetation response anomalies dur-
ing the same time period as normalized difference vegetation index
(NDVI). Data used for deriving NDVI was obtained from USGS
Landsat 8 Collection 1 Tier 1 and real-time data top-of-atmosphere
reflectance collection. In Ethiopia, the boreholes serve on average
250 households, within proximity of the borehole site (Table 1). In
Kenya, the boreholes often have piped water lines extending on aver-
age 5 km from the pumping site. A buffer of 2.5 km from the borehole
site was chosen to capture local influence of water pumping on
NDVI, as well as up to 50% of the mean service area radius from the
borehole site, as the assumed area of influence of water pumping on
NDVI.

Finally, we used the NASA Gravity Recovery and Climate Exper-
iment (GRACE) dataset. Launched in March 2002, the twin GRACE
satellites mapped variations in the Earth’s gravity field until the end

Table 1
Descriptive Statistics of Sensor and Survey Data for boreholes in Afar, Ethiopia and northern Kenya. Notes: Total population estimates
based on 4.7 persons/household in rural Kenya (Kenya National Bureau of Statistics, 2014) and 5.1 persons/household in rural Ethiopia
(CSA and Bank, 2013). Rain/Dry season borehole runtime disaggregation unavailable for Ethiopia data.

n Mean SD Min. Max.

Northern Kenya
Sensor — Observational Period (Days) 122 sites 256.89 169.30 19 610
Sensor — Daily Run Time (Hours) 31,340 site-days 5.90 6.90 0 23.33
Survey — Service Area (km radius) 126 5 5 0 35
Survey — Well Age (years) 106 10 10 1 52
Survey — Well Depth (meters) 92 118 81 4 276
Survey — Runtime - Wet Season (Hrs/Day) 109 7 6 0 24
Survey — Runtime - Dry Season (Hrs/Day) 127 10 6 1 24
Survey — Estimated Average Yield (m3/hour) 132 19 20 2 125
Survey — Households Served/Borehole 127 2060 3837 5 24,000
Survey — Population Served/Borehole 127 9681 18,034 0 112,800
Survey — Total Population Served 127 1,219,862

Afar, Ethiopia
Sensor — Observational Period (Days) 99 sites 257.89 169.30 11 610
Sensor — Daily Run Time (Hours) 25,512 site-days 4.09 6.16 0 23.33
Survey — Service Area (km radius) n/a n/a n/a n/a n/a
Survey — Well Age (years) 94 16 7 9 44
Survey — Well Depth (meters) 14 76 44 35 192
Survey — Runtime (Hours/Day) 103 9 6 0 24
Survey — Estimated Average Yield (m3/hour) 46 18 21 1 119
Survey — Households Served/Borehole 101 250 413 0 3090
Survey — Population Served/Borehole 101 1274 2107 0 15,759
Survey — Total Population Served 101 127,393
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of the science mission in October 2017. By observing changes in the
Earth’s gravity field, changes in the amount of water stored in a
region can be derived (Tapley et al., 2004; Wahr et al., 2004). Many
studies that assess regional groundwater availability and depletion
incorporate additional parameters when comparing GRACE with
well data, including precipitation, soil moisture, surface waters, and
biomass, either through in-situ measurements or through models, as
the GRACE satellites data represent total water storage, not exclu-
sively groundwater (Rodell et al., 2009; Yeh et al., 2006; Long et al.,
2013).

Although this data set is only available at a coarse scale of 100 km
spatial resolution and once a month, the dataset provided an inde-
pendent assessment of the regional groundwater condition. The
monthly GRACE anomalies were compared against the groundwater
extraction data. The comparisons were made against individual well
points, as well as the means of all the extraction data that fell within
a single GRACE pixel.

3.4. Statistical methods

The three remote sensing data sets were initially examined inde-
pendently for seasonal and spatial variability. The NDVI data set
did not exhibit significant variability. The GRACE data coarse spa-
tial scale, encapsulated most of the boreholes under observation,
and therefore did not allow site-wise analysis. There was also lim-
ited temporal overlap between the GRACE data and the borehole
extraction data. In addition since GRACE data are at monthly time
steps, there were very few points for comparison. Therefore, only
the CHIRPS rainfall data was analyzed against the borehole runtime
data.

We examined the relationship between borehole use and rain-
fall during the period January 1, 2017 to August 31, 2018. Because
sensors were being actively installed on boreholes during the study
period, the duration of the monitoring period was variable (unbal-
anced) across the individual boreholes. Borehole runtime (in hours)
and total rainfall (in mm) were summed over successive one-week
periods at each site. Incomplete weekly borehole runtime data due
to sensor malfunctions or data transmission issues were recorded as
missing. In addition, boreholes that had no usable data during the
entire study period were excluded from the analysis.

This combination of data on individual borehole use with site
specific-rainfall estimates resulted in a time-series cross-section
(TSCS) data structure, consisting of 221 site-specific bivariate time
series. Because the monitored boreholes were spread across a large
geographic area, aggregating these data into a single bivariate
time series for each country would limit our ability to examine
the hypothesized relationship of borehole use with local rainfall
events. Therefore, we employed a regression modeling approach
to TSCS data that allowed us to estimate the pooled effect of
local rainfall across individual study sites while accounting for the
presence of between-borehole heterogeneity, autocorrelation, non-
independence of errors, and unbalanced data. Specifically, we fit
time-series regression models of the relationship between weekly
borehole runtime and one-week lagged rainfall, including a borehole
fixed-effect to control for unmeasured, time-invariant heterogene-
ity across borehole sites and a lagged dependent variable to account
for temporal autocorrelation. We used robust standard errors to
adjust for within-borehole clustering. Because weekly borehole run-
time was right-skewed and overdispersed, all regression models
were specified using the negative binomial distribution. We fit a
model combining all sites across the study region as well as sep-
arate country-specific models and tested for the presence of non-
linear effects by fitting models with higher order polynomial terms
(quadratic, cubic). Parameter estimates for higher-order polyno-
mial terms were non-significant and were dropped from the final
models.

In addition to models including prior week rainfall as a continu-
ous variable, we examined the impact of lack of rainfall in the prior
week by fitting a series of models regressing borehole runtime on a
binary indicator of no rainfall vs. any rainfall. With the exception of
dichotomizing rainfall, these models were constructed identically to
those containing rainfall as a continuous measure. For models con-
taining rainfall as a continuous measure, we exponentiated model
coefficients to yield the percent reduction in borehole runtime asso-
ciated with a unit (mm) increase in one-week lagged rainfall and we
generated marginal estimates of runtime across the range of rain-
fall levels observed during the study period. For models including
a binary measure of rainfall, exponentiated coeffients represent the
percent increase in borehole use associated with no rainfall in the
prior week. All statistical analyses were conducted using Stata 15
(Stata Corporation, College Station, TX).

Fig. 2. Afar Ethiopia total weekly rainfall (mm) vs mean daily borehole runtime (hrs) January 1, 2017–August 31, 2018. Shaded areas indicate FEWSNet Food Security Classification
(FEWSNet, 2019).
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Fig. 3. Northern Kenya total weekly rainfall (mm) vs mean daily borehole runtime (hrs) January 1, 2017–August 31, 2018. Shaded areas indicate FEWSNet Food Security
Classification (FEWSNet, 2019).

4. Findings

After excluding 3 boreholes that did not have usable data, a total
of 221 boreholes were included in the analysis. In Kenya, 122 bore-
holes contributed a total of 4289 pump weeks of data available for
analysis, with an average of 35.2 (SD = 24.1) weeks of data per site.
In Ethiopia, 99 boreholes contributed a total of 3543 pump weeks
of data, with an average of 35.8 (SD = 21.1) weeks of data per site.
The mean weekly borehole runtime was 36.2 hours (SD = 44.4) dur-
ing the study period. Consistent with weather patterns in this arid
region, weekly rainfall totals were right skewed, with a mean of
7.84 mm (SD = 18.8) and a median of 0 mm (IQR = 5.3) in Kenya and
a mean of 9.60 (SD = 15.7) and a median of 2.35 mm (IQR = 13.0)
in Ethiopia. Low rainfall conditions were prevalent across the study
area, with no observed rainfall during 65.7% of weekly intervals in
Kenya and 47.7% in Ethiopia.

See Figs. 2 and 3 for total weekly rainfall and mean daily bore-
hole runtime during the study period for Afar, Ethiopia and northern
Kenya. The shaded areas indicate the Famine Early Warning Sys-
tems Network (FewsNET) Food Security Classification during this
period. The FewsNET model is based in part on rainfall estimates
using remote sensing data. As food security stress is forecast based
on estimated agricultural yields after periods of rainfall, higher food
security stress classifications lag periods of low rainfall. FewsNET is
a service adopted by the governments of both Ethiopia and Kenya
(FEWSNet, 2019).

Our graphical abstract indicates borehole runtime on August 31,
2018, and rainfall during August 2018. The size of the points indicates
the magnitude of borehole runtime from 0 to 24 h per day.

Table 1 presents descriptive statistics of survey and sensor data
collected at borehole sites.

Estimated water production yields per borehole based on sur-
vey data indicated 18 m3 per hour in Ethiopia and 19 m3 per hour in
Kenya, with high variability between sites. Therefore in our analysis
we compared directly measured hourly runtime data rather than
estimated water yields.

We observed a statistically significant relationship between bore-
hole runtime and 1-week lagged rainfall in each of the country-
specific models. In Kenya, a 1.0 mm increase in rainfall was asso-
ciated with a 1.1% decrease in borehole use the following week
(RR = 0.989, 95% CI = 0.988 –0.992, p < .001) after controlling

for time-invariant, site-level heterogeneity. Similarly, in Ethiopia, a
1.0 mm increase in rainfall was associated with a 1.3% decrease in
borehole use (RR = 0.987, 95%CI = 0.985 –0.990, p < .001). Com-
bined, a 1 mm increase in rainfall was associated with a 1.1% decrease
in borehole use the following week (RR = 0.989, 95% CI = 0.988 –
0.991, p < .001). In models containing rainfall as a binary variable,
we observed an overall 22.9% increase (RR = 1.229, 95%CI = 1.166 –
1.296, p < .001) in borehole runtime following weeks with no rainfall
compared to weeks preceded by any rainfall. Across sites in Kenya,
we observed a 19.9% increase (RR = 1.199, 95%CI = 1.109 –1.297, p
< .001), while in Ethiopia we observed a 27.1% increase in borehole

Fig. 4. Model-estimated borehole runtime by total prior week rainfall. Shaded area
represents 95% confidence interval.
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runtime following weeks with no rainfall (RR = 1.271, 95%CI = 1.186
–1.362, p < .001).

Fig. 4 displays model-estimated borehole use across the levels
of rainfall observed during the study period. Note that the maxi-
mum observed rainfall in Afar, Ethiopia was considerably less than
observed in northern Kenya during this period.

5. Discussion

This study quantifies borehole use using in-situ sensors and thus
represents a direct measure of regional population response to low
rainfall. We identified a negative correlation between satellite esti-
mated rainfall and groundwater use in parts of the East African Rift
Valley that likely reflects a general pattern of freshwater availabil-
ity in a drought prone environment. Our findings are consistent with
another recent study comparing rainfall to handpump use, wherein a
34% reduction in groundwater use during the wet season compared
to the dry season was observed (Thomson et al., 2019). We interpret
the increased use of groundwater during the dry seasons as revealing
a preference for surface water sources, and that when these sources
are dry, the alternative is groundwater use.

The NDVI data analyzed did not show significant variability that
allowed a statistical comparison to groundwater pumping. The buffer
chosen of 2.5 km from the pump site may be imprecise and future
work could attempt to better characterize pump sites that are used
for irrigation, and estimate service area on a per pump site basis,
allowing for a more refined analysis.

With respect to the GRACE groundwater estimates, as GRACE
measures total water storage, future work should attempt to assess
the relationship between GRACE, groundwater and other indicators
of water including soil moisture and surface water, to better char-
acterize the groundwater in the region. Our work was a first step in
exploring these relationships and we had relatively few GRACE data
points because of the spatial and temporal scale of GRACE data com-
pared to the length of time and spatial extent of the sensors. Future
work could incorporated hydrologic modeling including the Famine
Early Warning Systems Network Data Assimilation System.

6. Policy implications

The dry seasons in this region often results in drought emer-
gencies which highlight the importance of functional groundwater
sources as well as expansion and maintenance of surface water
retention efforts, including rainwater catchment. Yet, maintaining
functionality of groundwater boreholes and water access is an on-
going challenge.

National budget allocations and international donors have pri-
oritized new water system installations in this region, with the
assumption that local communities and regional governments will
successfully manage operation, maintenance and service delivery
(Butterworth et al., 2010; Moriarty et al., 2013). However, the real-
ity is that funding and accountability for service delivery falls short
of meeting water demands, resulting in a high degree of water sys-
tem failures (Hope et al., 2012; Foster et al., 2018; Nagel et al.,
2015). As noted earlier, when these failures occur during dry seasons
or drought conditions, negative consequences are exacerbated. The
combination of drought conditions and preventable water system
failures increases water stress and the costs of emergency drought
response.

In Kenya, UNICEF estimates that 35% of rural water supplies were
non-functional prior to the 2016 drought, increasing to over 55% of
systems, either because of mechanical failures or depleted ground-
water, causing an ten-fold increase in the cost of water (UNICEF,
2017). During drought emergencies, the Kenya National Drought
Management Authority has two key drought response activities: a)
Maintenance of groundwater boreholes, and b) Provisioning of water

trucking (NDMA, 2013). While not all water trucking sites corre-
late to groundwater borehole failures, increased failures and lengthy
repair intervals exacerbate the impact and costs of drought. USAID
recently estimated that an early, proactive and planned humanitar-
ian response to drought, rather than a reactive and late response,
would save USAID over 780 million dollars over 15 years in Kenya
alone (Venton, 2018).

In Ethiopia, a recent study estimated the costs of emergency
water trucking attributable to water system failures at over two
thousand dollars per person over ten years, based on an estimated
failure rate of rural water systems of 50% (Godfrey and Hailemichael,
2017).

Therefore, the relationship we observed between groundwater
use and rainfall underlines the significance of the operation and
maintenance of borehole pumps as an imperative to maintain water
access at the regional scale. This work demonstrates that sensor net-
work implementation across large spatial scales can provide both
practical benefits, for example providing real-time monitoring for
pump malfunction, as well as broader benefits such as provid-
ing quantifiable information on water extraction that is otherwise
difficult to collect. Such results can further on-going work to use sen-
sor data collected at boreholes to enable and incentivize improved
operation and maintenance programs across the regions that can
effectively reduce drought emergencies.

Additionally, these types of sensor networks and data can be
linked to distributed weather data networks such as the Trans-
African HydroMeteorological Observatory (van de Giesen et al., 2014)
and remote sensing based forecasting models including FewsNET
(McNally et al., 2017). Together, these tools can enable opportunities
to improve drought resilience in east Africa.
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